A matter collineation (sometimes matter symmetry and abbreviated to MC) is a vector field that satisfies the condition,
where are the energy–momentum tensor components. The intimate relation between geometry and physics may be highlighted here, as the vector field is regarded as preserving certain physical quantities along the flow lines of , this being true for any two observers. In connection with this, it may be shown that every Killing vector field is a matter collineation (by the Einstein field equations (EFE), with or without cosmological constant). Thus, given a solution of the EFE, a vector field that preserves the metric necessarily preserves the corresponding energy-momentum tensor. When the energy-momentum tensor represents a perfect fluid, every Killing vector field preserves the energy density, pressure and the fluid flow vector field. When the energy-momentum tensor represents an electromagnetic field, a Killing vector field does not necessarily preserve the electric and magnetic fields.
Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.
In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is :
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal,
In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure, each particle gets pushed against by all the surrounding particles. The container walls and the pressure-inducing surface push against them in (Newtonian) reaction. These macroscopic forces are actually the net result of a very large number of intermolecular forces and collisions between the particles in those molecules. Stress is frequently represented by a lowercase Greek letter sigma (σ).
In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
Certain commutation relations among the current density operators in quantum field theories define an infinite-dimensional Lie algebra called a current algebra. Mathematically these are Lie algebras consisting of smooth maps from a manifold into a finite dimensional Lie algebra.
A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically meant to describe electromagnetism and gravitation, two of the fundamental forces of nature.
When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are used. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.
Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.
Spacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries.
A projective vector field (projective) is a smooth vector field on a semi Riemannian manifold whose flow preserves the geodesic structure of without necessarily preserving the affine parameter of any geodesic. More intuitively, the flow of the projective maps geodesics smoothly into geodesics without preserving the affine parameter.
In physics, a homothetic vector field is a projective vector field which satisfies the condition:
An affine vector field is a projective vector field preserving geodesics and preserving the affine parameter. Mathematically, this is expressed by the following condition:
A curvature collineation is vector field which preserves the Riemann tensor in the sense that,
In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically-phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions.
In conformal geometry, a conformal Killing vector field on a manifold of dimension n with (pseudo) Riemannian metric , is a vector field whose flow defines conformal transformations, that is, preserve up to scale and preserve the conformal structure. Several equivalent formulations, called the conformal Killing equation, exist in terms of the Lie derivative of the flow e.g. for some function on the manifold. For there are a finite number of solutions, specifying the conformal symmetry of that space, but in two dimensions, there is an infinity of solutions. The name Killing refers to Wilhelm Killing, who first investigated Killing vector fields.
In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, some collineations are not homographies, but the fundamental theorem of projective geometry asserts that is not so in the case of real projective spaces of dimension at least two. Synonyms include projectivity, projective transformation, and projective collineation.
The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.