Courant algebroid

Last updated

In a field of mathematics known as differential geometry, a Courant geometry was originally introduced by Zhang-Ju Liu, Alan Weinstein and Ping Xu in their investigation of doubles of Lie bialgebroids in 1997. [1] Liu, Weinstein and Xu named it after Courant, who had implicitly devised earlier in 1990 [2] the standard prototype of Courant algebroid through his discovery of a skew symmetric bracket on , called Courant bracket today, which fails to satisfy the Jacobi identity. Both this standard example and the double of a Lie bialgebra are special instances of Courant algebroids.

Contents

Definition

A Courant algebroid consists of the data a vector bundle with a bracket , a non degenerate fiber-wise inner product , and a bundle map subject to the following axioms,

where are sections of E and f is a smooth function on the base manifold M. D is the combination with d the de Rham differential, the dual map of , and κ the map from E to induced by the inner product.

Skew-Symmetric Definition

An alternative definition can be given to make the bracket skew-symmetric as

This no longer satisfies the Jacobi-identity axiom above. It instead fulfills a homotopic Jacobi-identity.

where T is

The Leibniz rule and the invariance of the scalar product become modified by the relation and the violation of skew-symmetry gets replaced by the axiom

The skew-symmetric bracket together with the derivation D and the Jacobiator T form a strongly homotopic Lie algebra.

Properties

The bracket is not skew-symmetric as one can see from the third axiom. Instead it fulfills a certain Jacobi-identity (first axiom) and a Leibniz rule (second axiom). From these two axioms one can derive that the anchor map ρ is a morphism of brackets:

The fourth rule is an invariance of the inner product under the bracket. Polarization leads to

Examples

An example of the Courant algebroid is the Dorfman bracket [3] on the direct sum with a twist introduced by Ševera, [4] (1998) defined as:

where X,Y are vector fields, ξ,η are 1-forms and H is a closed 3-form twisting the bracket. This bracket is used to describe the integrability of generalized complex structures.

A more general example arises from a Lie algebroid A whose induced differential on will be written as d again. Then use the same formula as for the Dorfman bracket with H an A-3-form closed under d.

Another example of a Courant algebroid is a quadratic Lie algebra, i.e. a Lie algebra with an invariant scalar product. Here the base manifold is just a point and thus the anchor map (and D) are trivial.

The example described in the paper by Weinstein et al. comes from a Lie bialgebroid, i.e. A a Lie algebroid (with anchor and bracket ), also its dual a Lie algebroid (inducing the differential on ) and (where on the RHS you extend the A-bracket to using graded Leibniz rule). This notion is symmetric in A and (see Roytenberg). Here with anchor and the bracket is the skew-symmetrization of the above in X and α (equivalently in Y and β):

Dirac structures

Given a Courant algebroid with the inner product of split signature (e.g. the standard one ), then a Dirac structure is a maximally isotropic integrable vector subbundle L → M, i.e.

,
,
.

Examples

As discovered by Courant and parallel by Dorfman, the graph of a 2-form ωΩ2(M) is maximally isotropic and moreover integrable iff dω = 0, i.e. the 2-form is closed under the de Rham differential, i.e. a presymplectic structure.

A second class of examples arises from bivectors whose graph is maximally isotropic and integrable iff [Π,Π] = 0, i.e. Π is a Poisson bivector on M.

Generalized complex structures

(see also the main article generalized complex geometry)

Given a Courant algebroid with inner product of split signature. A generalized complex structure L → M is a Dirac structure in the complexified Courant algebroid with the additional property

where means complex conjugation with respect to the standard complex structure on the complexification.

As studied in detail by Gualtieri [5] the generalized complex structures permit the study of geometry analogous to complex geometry.

Examples

Examples are beside presymplectic and Poisson structures also the graph of a complex structure J: TMTM.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation, master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems. It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings. The resulting dynamics is no longer unitary, but still satisfies the property of being trace-preserving and completely positive for any initial condition.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.

One of the guiding principles in modern chemical dynamics and spectroscopy is that the motion of the nuclei in a molecule is slow compared to that of its electrons. This is justified by the large disparity between the mass of an electron, and the typical mass of a nucleus and leads to the Born–Oppenheimer approximation and the idea that the structure and dynamics of a chemical species are largely determined by nuclear motion on potential energy surfaces.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

A Representation up to homotopy has several meanings. One of the earliest appeared in the `physical' context of constrained Hamiltonian systems. The essential idea is lifting a non-representation on a quotient to a representation up to strong homotopy on a resolution of the quotient. As a concept in differential geometry, it generalizes the notion of representation of a Lie algebra to Lie algebroids and nontrivial vector bundles. As such, it was introduced by Abad and Crainic.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In physics, the distorted Schwarzschild metric is the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

A Lie bialgebroid is a mathematical structure in the area of non-Riemannian differential geometry. In brief a Lie bialgebroid are two compatible Lie algebroids defined on dual vector bundles. They form the vector bundle version of a Lie bialgebra.

References

  1. Z-J. Liu, A. Weinstein, and P. Xu: Manin triples for Lie Bialgebroids, Journ. of Diff.geom. 45 pp.647–574 (1997).
  2. T.J. Courant: Dirac Manifolds, Transactions of the American Mathematical Society, vol. 319, pp.631–661 (1990).
  3. I.Y. Dorfman: Dirac structures of integrable evolution equations, Physics Letters A, vol.125, pp.240–246 (1987).
  4. P. Ševera: Letters to A. Weinstein Archived 2011-07-19 at the Wayback Machine , unpublished.
  5. M. Gualtieri: Generalized complex geometry, Ph.D. thesis, Oxford university, (2004)

Further reading