Affine Lie algebra

Last updated

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

Contents

Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra , one considers the loop algebra, , formed by the -valued functions on a circle (interpreted as the closed string) with pointwise commutator. The affine Lie algebra is obtained by adding one extra dimension to the loop algebra and modifying the commutator in a non-trivial way, which physicists call a quantum anomaly (in this case, the anomaly of the WZW model) and mathematicians a central extension . More generally, if σ is an automorphism of the simple Lie algebra associated to an automorphism of its Dynkin diagram, the twisted loop algebra consists of -valued functions f on the real line which satisfy the twisted periodicity condition f(x + 2π) = σ f(x). Their central extensions are precisely the twisted affine Lie algebras. The point of view of string theory helps to understand many deep properties of affine Lie algebras, such as the fact that the characters of their representations transform amongst themselves under the modular group.

Affine Lie algebras from simple Lie algebras

Definition

If is a finite-dimensional simple Lie algebra, the corresponding affine Lie algebra is constructed as a central extension of the loop algebra , with one-dimensional center As a vector space,

where is the complex vector space of Laurent polynomials in the indeterminate t. The Lie bracket is defined by the formula

for all and , where is the Lie bracket in the Lie algebra and is the Cartan-Killing form on

The affine Lie algebra corresponding to a finite-dimensional semisimple Lie algebra is the direct sum of the affine Lie algebras corresponding to its simple summands. There is a distinguished derivation of the affine Lie algebra defined by

The corresponding affine Kac–Moody algebra is defined as a semidirect product by adding an extra generator d that satisfies [d, A] = δ(A).

Constructing the Dynkin diagrams

The Dynkin diagram of each affine Lie algebra consists of that of the corresponding simple Lie algebra plus an additional node, which corresponds to the addition of an imaginary root. Of course, such a node cannot be attached to the Dynkin diagram in just any location, but for each simple Lie algebra there exists a number of possible attachments equal to the cardinality of the group of outer automorphisms of the Lie algebra. In particular, this group always contains the identity element, and the corresponding affine Lie algebra is called an untwisted affine Lie algebra. When the simple algebra admits automorphisms that are not inner automorphisms, one may obtain other Dynkin diagrams and these correspond to twisted affine Lie algebras.

Dynkin diagrams for affine Lie algebras
Affine Dynkin diagrams.png
The set of extended (untwisted) affine Dynkin diagrams, with added nodes in green
Twisted affine Dynkin diagrams.png
"Twisted" affine forms are named with (2) or (3) superscripts.
(k is the number of nodes in the graph)

Classifying the central extensions

The attachment of an extra node to the Dynkin diagram of the corresponding simple Lie algebra corresponds to the following construction. An affine Lie algebra can always be constructed as a central extension of the loop algebra of the corresponding simple Lie algebra. If one wishes to begin instead with a semisimple Lie algebra, then one needs to centrally extend by a number of elements equal to the number of simple components of the semisimple algebra. In physics, one often considers instead the direct sum of a semisimple algebra and an abelian algebra . In this case one also needs to add n further central elements for the n abelian generators.

The second integral cohomology of the loop group of the corresponding simple compact Lie group is isomorphic to the integers. Central extensions of the affine Lie group by a single generator are topologically circle bundles over this free loop group, which are classified by a two-class known as the first Chern class of the fibration. Therefore, the central extensions of an affine Lie group are classified by a single parameter k which is called the level in the physics literature, where it first appeared. Unitary highest weight representations of the affine compact groups only exist when k is a natural number. More generally, if one considers a semi-simple algebra, there is a central charge for each simple component.

Structure

Cartan–Weyl basis

As in the finite case, determining the Cartan–Weyl basis is an important step in determining the structure of affine Lie algebras.

Fix a finite-dimensional, simple, complex Lie algebra with Cartan subalgebra and a particular root system . Introducing the notation , one can attempt to extend a Cartan–Weyl basis for to one for the affine Lie algebra, given by , with forming an abelian subalgebra.

The eigenvalues of and on are and respectively and independently of . Therefore the root is infinitely degenerate with respect to this abelian subalgebra. Appending the derivation described above to the abelian subalgebra turns the abelian subalgebra into a Cartan subalgebra for the affine Lie algebra, with eigenvalues for

Killing form

The Killing form can almost be completely determined using its invariance property. Using the notation for the Killing form on and for the Killing form on the affine Kac–Moody algebra, where only the last equation is not fixed by invariance and instead chosen by convention. Notably, the restriction of to the subspace gives a bilinear form with signature .

Write the affine root associated with as . Defining , this can be rewritten

The full set of roots is Then is unusual as it has zero length: where is the bilinear form on the roots induced by the Killing form.

Affine simple root

In order to obtain a basis of simple roots for the affine algebra, an extra simple root must be appended, and is given by where is the highest root of , using the usual notion of height of a root. This allows definition of the extended Cartan matrix and extended Dynkin diagrams.

Representation theory

The representation theory for affine Lie algebras is usually developed using Verma modules. Just as in the case of semi-simple Lie algebras, these are highest weight modules. There are no finite-dimensional representations; this follows from the fact that the null vectors of a finite-dimensional Verma module are necessarily zero; whereas those for the affine Lie algebras are not. Roughly speaking, this follows because the Killing form is Lorentzian in the directions, thus are sometimes called "lightcone coordinates" on the string. The "radially ordered" current operator products can be understood to be time-like normal ordered by taking with the time-like direction along the string world sheet and the spatial direction.

Vacuum representation of rank k

The representations are constructed in more detail as follows. [1]

Fix a Lie algebra and basis . Then is a basis for the corresponding loop algebra, and is a basis for the affine Lie algebra .

The vacuum representation of rank , denoted by where , is the complex representation with basis and where the action of on is given by:

Affine Vertex Algebra

The vacuum representation in fact can be equipped with vertex algebra structure, in which case it is called theaffine vertex algebra of rank . The affine Lie algebra naturally extends to the Kac–Moody algebra, with the differential represented by the translation operator in the vertex algebra.

Weyl group and characters

The Weyl group of an affine Lie algebra can be written as a semi-direct product of the Weyl group of the zero-mode algebra (the Lie algebra used to define the loop algebra) and the coroot lattice.

The Weyl character formula of the algebraic characters of the affine Lie algebras generalizes to the Weyl-Kac character formula. A number of interesting constructions follow from these. One may construct generalizations of the Jacobi theta function. These theta functions transform under the modular group. The usual denominator identities of semi-simple Lie algebras generalize as well; because the characters can be written as "deformations" or q-analogs of the highest weights, this led to many new combinatoric identities, include many previously unknown identities for the Dedekind eta function. These generalizations can be viewed as a practical example of the Langlands program.

Applications

Due to the Sugawara construction, the universal enveloping algebra of any affine Lie algebra has the Virasoro algebra as a subalgebra. This allows affine Lie algebras to serve as symmetry algebras of conformal field theories such as WZW models or coset models. As a consequence, affine Lie algebras also appear in the worldsheet description of string theory.

Example

The Heisenberg algebra [2] defined by generators satisfying commutation relations can be realized as the affine Lie algebra .

Related Research Articles

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a ‑grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

In mathematics, a Kac–Moody algebra is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting.

In mathematics, loop algebras are certain types of Lie algebras, of particular interest in theoretical physics.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

In mathematical physics the Knizhnik–Zamolodchikov equations, or KZ equations, are linear differential equations satisfied by the correlation functions of two-dimensional conformal field theories associated with an affine Lie algebra at a fixed level. They form a system of complex partial differential equations with regular singular points satisfied by the N-point functions of affine primary fields and can be derived using either the formalism of Lie algebras or that of vertex algebras.

In mathematics, generalized Verma modules are a generalization of a (true) Verma module, and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries.

In algebra, the Nichols algebra of a braided vector space is a braided Hopf algebra which is denoted by and named after the mathematician Warren Nichols. It takes the role of quantum Borel part of a pointed Hopf algebra such as a quantum groups and their well known finite-dimensional truncations. Nichols algebras can immediately be used to write down new such quantum groups by using the Radford biproduct.

In differential geometry, a field in mathematics, a Lie bialgebroid consists of two compatible Lie algebroids defined on dual vector bundles. Lie bialgebroids are the vector bundle version of Lie bialgebras.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

References

  1. Schottenloher, Martin (11 September 2008). A Mathematical Introduction to Conformal Field Theory. Lecture Notes in Physics. Vol. 759 (2 ed.). Berlin: Springer-Verlag. pp. 196–7. doi:10.1007/978-3-540-68628-6. ISBN   978-3-540-68625-5 . Retrieved 16 January 2023.
  2. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN   0-387-94785-X