Current algebra

Last updated

Certain commutation relations among the current density operators in quantum field theories define an infinite-dimensional Lie algebra called a current algebra. [1] Mathematically these are Lie algebras consisting of smooth maps from a manifold into a finite dimensional Lie algebra. [2]

Contents

History

The original current algebra, proposed in 1964 by Murray Gell-Mann, described weak and electromagnetic currents of the strongly interacting particles, hadrons, leading to the Adler–Weisberger formula and other important physical results. The basic concept, in the era just preceding quantum chromodynamics, was that even without knowing the Lagrangian governing hadron dynamics in detail, exact kinematical information – the local symmetry – could still be encoded in an algebra of currents. [3]

The commutators involved in current algebra amount to an infinite-dimensional extension of the Jordan map, where the quantum fields represent infinite arrays of oscillators.

Current algebraic techniques are still part of the shared background of particle physics when analyzing symmetries and indispensable in discussions of the Goldstone theorem.

Example

In a non-Abelian Yang–Mills symmetry, where V and A are flavor-current and axial-current 0th components (charge densities), respectively, the paradigm of a current algebra is [4] [5]

and

where f are the structure constants of the Lie algebra. To get meaningful expressions, these must be normal ordered.

The algebra resolves to a direct sum of two algebras, L and R, upon defining

whereupon

Conformal field theory

For the case where space is a one-dimensional circle, current algebras arise naturally as a central extension of the loop algebra, known as Kac–Moody algebras or, more specifically, affine Lie algebras. In this case, the commutator and normal ordering can be given a very precise mathematical definition in terms of integration contours on the complex plane, thus avoiding some of the formal divergence difficulties commonly encountered in quantum field theory.

When the Killing form of the Lie algebra is contracted with the current commutator, one obtains the energy–momentum tensor of a two-dimensional conformal field theory. When this tensor is expanded as a Laurent series, the resulting algebra is called the Virasoro algebra. [6] This calculation is known as the Sugawara construction.

The general case is formalized as the vertex operator algebra.

See also

Notes

  1. Goldin 2006
  2. Kac, Victor (1983). Infinite Dimensional Lie Algebras. Springer. p. x. ISBN   978-1475713848.
  3. Gell-Mann & Ne'eman 1964
  4. Gell-Mann, M. (1964). "The Symmetry group of vector and axial vector currents". Physics. 1 (1): 63. doi: 10.1103/PhysicsPhysiqueFizika.1.63 . PMID   17836376.
  5. Treiman, Jackiw & Gross 1972
  6. Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN   0-521-48412-X

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, the Baker–Campbell–Hausdorff formula is the solution for to the equation

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Virasoro algebra</span> Algebra describing 2D conformal symmetry

In mathematics, the Virasoro algebra is a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".

The Gell-Mann matrices, developed by Murray Gell-Mann, are a set of eight linearly independent 3×3 traceless Hermitian matrices used in the study of the strong interaction in particle physics. They span the Lie algebra of the SU(3) group in the defining representation.

In theoretical physics, the Batalin–Vilkovisky (BV) formalism was developed as a method for determining the ghost structure for Lagrangian gauge theories, such as gravity and supergravity, whose corresponding Hamiltonian formulation has constraints not related to a Lie algebra. The BV formalism, based on an action that contains both fields and "antifields", can be thought of as a vast generalization of the original BRST formalism for pure Yang–Mills theory to an arbitrary Lagrangian gauge theory. Other names for the Batalin–Vilkovisky formalism are field-antifield formalism, Lagrangian BRST formalism, or BV–BRST formalism. It should not be confused with the Batalin–Fradkin–Vilkovisky (BFV) formalism, which is the Hamiltonian counterpart.

In mathematics, a Kac–Moody algebra is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting.

<span class="mw-page-title-main">Eightfold way (physics)</span> Classification scheme for hadrons

In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. American physicist Murray Gell-Mann and Israeli physicist Yuval Ne'eman both proposed the idea in 1961. The name comes from Gell-Mann's (1961) paper and is an allusion to the Noble Eightfold Path of Buddhism.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians first appeared in physics in the work of Ludvig Faddeev and his school in the late 1970s and early 1980s concerning the quantum inverse scattering method. The name Yangian was introduced by Vladimir Drinfeld in 1985 in honor of C.N. Yang.

The Schrödinger group is the symmetry group of the free particle Schrödinger equation. Mathematically, the group SL(2,R) acts on the Heisenberg group by outer automorphisms, and the Schrödinger group is the corresponding semidirect product.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

References