The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.
Takahashi et al., in 1988, began a study of Galilean symmetry, where an explicitly covariant non-relativistic field theory could be developed. The theory is constructed in the light cone of a (4,1) Minkowski space.[1][2][3][4] Previously, in 1985, Duval et al. constructed a similar tensor formulation in the context of Newton–Cartan theory.[5] Some other authors also have developed a similar Galilean tensor formalism.[6][7]
Galilean manifold
The Galilei transformations are
where stands for the three-dimensional Euclidean rotations, is the relative velocity determining Galilean boosts, a stands for spatial translations and b, for time translations. Consider a free mass particle ; the mass shell relation is given by .
In 1985 Duval, Burdet and Kunzle showed that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction. The metric used is the same as the Galilean metric but with all positive entries
This lifting is considered to be useful for non-relativistic holographic models.[8] Gravitational models in this framework have been shown to precisely calculate the Mercury precession.[9]
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.