Galilei-covariant tensor formulation

Last updated

The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.

Contents

Takahashi et al., in 1988, began a study of Galilean symmetry, where an explicitly covariant non-relativistic field theory could be developed. The theory is constructed in the light cone of a (4,1) Minkowski space. [1] [2] [3] [4] Previously, in 1985, Duval et al. constructed a similar tensor formulation in the context of Newton–Cartan theory. [5] Some other authors also have developed a similar Galilean tensor formalism. [6] [7]

Galilean manifold

The Galilei transformations are

where stands for the three-dimensional Euclidean rotations, is the relative velocity determining Galilean boosts, a stands for spatial translations and b, for time translations. Consider a free mass particle ; the mass shell relation is given by .

We can then define a 5-vector,

,

with .

Thus, we can define a scalar product of the type

where

is the metric of the space-time, and . [3]

Extended Galilei algebra

A five dimensional Poincaré algebra leaves the metric invariant,

We can write the generators as

The non-vanishing commutation relations will then be rewritten as

An important Lie subalgebra is

is the generator of time translations (Hamiltonian), Pi is the generator of spatial translations (momentum operator), is the generator of Galilean boosts, and stands for a generator of rotations (angular momentum operator). The generator is a Casimir invariant and is an additional Casimir invariant. This algebra is isomorphic to the extended Galilean Algebra in (3+1) dimensions with , The central charge, interpreted as mass, and .[ citation needed ]

The third Casimir invariant is given by , where is a 5-dimensional analog of the Pauli–Lubanski pseudovector. [4]

Bargmann structures

In 1985 Duval, Burdet and Kunzle showed that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction. The metric used is the same as the Galilean metric but with all positive entries

This lifting is considered to be useful for non-relativistic holographic models. [8] Gravitational models in this framework have been shown to precisely calculate the Mercury precession. [9]

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.

<span class="mw-page-title-main">Poincaré group</span> Group of flat spacetime symmetries

The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Dirac in 1928.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The 't Hooft symbol is a collection of numbers which allows one to express the generators of the SU(2) Lie algebra in terms of the generators of Lorentz algebra. The symbol is a blend between the Kronecker delta and the Levi-Civita symbol. It was introduced by Gerard 't Hooft. It is used in the construction of the BPST instanton.

In physics and mathematics, the κ-Poincaré group, named after Henri Poincaré, is a quantum group, obtained by deformation of the Poincaré group into a Hopf algebra. It is generated by the elements and with the usual constraint:

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

<span class="mw-page-title-main">Pauli–Lubanski pseudovector</span> Operator in quantum field theory

In physics, the Pauli–Lubanski pseudovector is an operator defined from the momentum and angular momentum, used in the quantum-relativistic description of angular momentum. It is named after Wolfgang Pauli and Józef Lubański,

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Takahashi, Yasushi (1988). "Towards the Many-Body Theory with the Galilei Invariance as a Guide: Part I". Fortschritte der Physik/Progress of Physics. 36 (1): 63–81. Bibcode:1988ForPh..36...63T. doi:10.1002/prop.2190360105. eISSN   1521-3978.
  2. Takahashi, Yasushi (1988). "Towards the Many-Body Theory with the Galilei invariance as a Gluide Part II". Fortschritte der Physik/Progress of Physics. 36 (1): 83–96. Bibcode:1988ForPh..36...83T. doi:10.1002/prop.2190360106. eISSN   1521-3978.
  3. 1 2 Omote, M.; Kamefuchi, S.; Takahashi, Y.; Ohnuki, Y. (1989). "Galilean Covariance and the Schrödinger Equation". Fortschritte der Physik/Progress of Physics (in German). 37 (12): 933–950. Bibcode:1989ForPh..37..933O. doi:10.1002/prop.2190371203. eISSN   1521-3978.
  4. 1 2 Santana, A. E.; Khanna, F. C.; Takahashi, Y. (1998-03-01). "Galilei Covariance and (4,1)-de Sitter Space". Progress of Theoretical Physics. 99 (3): 327–336. arXiv: hep-th/9812223 . Bibcode:1998PThPh..99..327S. doi:10.1143/PTP.99.327. ISSN   0033-068X. S2CID   17091575.
  5. Duval, C.; Burdet, G.; Künzle, H. P.; Perrin, M. (1985). "Bargmann structures and Newton–Cartan theory". Physical Review D. 31 (8): 1841–1853. Bibcode:1985PhRvD..31.1841D. doi:10.1103/PhysRevD.31.1841. PMID   9955910.
  6. Pinski, G. (1968-11-01). "Galilean Tensor Calculus". Journal of Mathematical Physics. 9 (11): 1927–1930. Bibcode:1968JMP.....9.1927P. doi:10.1063/1.1664527. ISSN   0022-2488.
  7. Kapuścik, Edward. (1985). On the relation between Galilean, Poincaré and Euclidean field equations. IFJ. OCLC   835885918.
  8. Goldberger, Walter D. (2009). "AdS/CFT duality for non-relativistic field theory". Journal of High Energy Physics. 2009 (3): 069. arXiv: 0806.2867 . Bibcode:2009JHEP...03..069G. doi:10.1088/1126-6708/2009/03/069. S2CID   118553009.
  9. Ulhoa, Sérgio C.; Khanna, Faqir C.; Santana, Ademir E. (2009-11-20). "Galilean covariance and the gravitational field". International Journal of Modern Physics A. 24 (28n29): 5287–5297. arXiv: 0902.2023 . Bibcode:2009IJMPA..24.5287U. doi:10.1142/S0217751X09046333. ISSN   0217-751X. S2CID   119195397.