Optic equation

Last updated
Integer solutions to the optic equation
.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
1/a +
1/b =
1/c for 1 <= a,b <= 99. The number in the circle is c. In the SVG file, hover over a circle to see its solution. Optic equation integer solutions.svg
Integer solutions to the optic equation 1/a + 1/b = 1/c for 1 a,b 99. The number in the circle is c. In the SVG file, hover over a circle to see its solution.

In number theory, the optic equation is an equation that requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c: [1]

Contents

Multiplying both sides by abc shows that the optic equation is equivalent to a Diophantine equation (a polynomial equation in multiple integer variables).

Solution

All solutions in integers a, b, c are given in terms of positive integer parameters m, n, k by [1]

where m, n are coprime.

Appearances in geometry

The optic equation with squares appears in the inverse Pythagorean theorem (red) Inverse pythagorean theorem.svg
The optic equation with squares appears in the inverse Pythagorean theorem (red)

The optic equation, permitting but not requiring integer solutions, appears in several contexts in geometry.

In a bicentric quadrilateral, the inradius r, the circumradius R, and the distance x between the incenter and the circumcenter are related by Fuss' theorem according to

and the distances of the incenter I from the vertices A, B, C, D are related to the inradius according to

Crossed ladders.
1
h
=
1
A
+
1
B
.
{\displaystyle {\tfrac {1}{h}}={\tfrac {1}{A}}+{\tfrac {1}{B}}.} CrossedLadders.svg
Crossed ladders.

In the crossed ladders problem, [2] two ladders braced at the bottoms of vertical walls cross at the height h and lean against the opposite walls at heights of A and B. We have Moreover, the formula continues to hold if the walls are slanted and all three measurements are made parallel to the walls.

Let P be a point on the circumcircle of an equilateral triangle ABC, on the minor arc AB. Let a be the distance from P to A and b be the distance from P to B. On a line passing through P and the far vertex C, let c be the distance from P to the triangle side AB. Then [3] :p. 172

In a trapezoid, draw a segment parallel to the two parallel sides, passing through the intersection of the diagonals and having endpoints on the non-parallel sides. Then if we denote the lengths of the parallel sides as a and b and half the length of the segment through the diagonal intersection as c, the sum of the reciprocals of a and b equals the reciprocal of c. [4]

The special case in which the integers whose reciprocals are taken must be square numbers appears in two ways in the context of right triangles. First, the sum of the reciprocals of the squares of the altitudes from the legs (equivalently, of the squares of the legs themselves) equals the reciprocal of the square of the altitude from the hypotenuse. This holds whether or not the numbers are integers; there is a formula (see here) that generates all integer cases. [5] [6] Second, also in a right triangle the sum of the squared reciprocal of the side of one of the two inscribed squares and the squared reciprocal of the hypotenuse equals the squared reciprocal of the side of the other inscribed square.

The sides of a heptagonal triangle, which shares its vertices with a regular heptagon, satisfy the optic equation.

Other appearances

Thin lens equation

Distances in the thin lens equation Lens3.svg
Distances in the thin lens equation

For a lens of negligible thickness and focal length f, the distances from the lens to an object, S1, and from the lens to its image, S2, are related by the thin lens formula:

Electrical engineering

Comparison of effective resistance, inductance and capacitance of two resistors, inductors and capacitors in series and parallel Resistors inductors capacitors in series and parallel.svg
Comparison of effective resistance, inductance and capacitance of two resistors, inductors and capacitors in series and parallel

Components of an electrical circuit or electronic circuit can be connected in what is called a series or parallel configuration. For example, the total resistance value Rt of two resistors with resistances R1 and R2 connected in parallel follows the optic equation:

Similarly, the total inductance Lt of two inductors with inductances L1, L2 connected in parallel is given by:

and the total capacitance Ct of two capacitors with capacitances C1, C2 connected in series is as follows:

Paper folding

Folding a rectangular sheet of paper into thirds using the crossed ladders problem Folding paper into thirds.svg
Folding a rectangular sheet of paper into thirds using the crossed ladders problem

The optic equation of the crossed ladders problem can be applied to folding rectangular paper into three equal parts. One side (the left one illustrated here) is partially folded in half and pinched to leave a mark. The intersection of a line from this mark to an opposite corner, with a diagonal is exactly one third from the bottom edge. The top edge can then be folded down to meet the intersection. [7]

Harmonic mean

The harmonic mean of a and b is or 2c. In other words, c is half the harmonic mean of a and b.

Relation to Fermat's Last Theorem

Fermat's Last Theorem states that the sum of two integers each raised to the same integer power n cannot equal another integer raised to the power n if n > 2. This implies that no solutions to the optic equation have all three integers equal to perfect powers with the same power n > 2. For if then multiplying through by would give which is impossible by Fermat's Last Theorem.

See also

Related Research Articles

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

In mathematics, a transcendental number is a real or complex number that is not algebraic – that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are π and e.

<span class="mw-page-title-main">Right triangle</span> Triangle containing a 90-degree angle

A right triangle or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle, is a triangle in which one angle is a right angle, i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths a, b, c. If is the semiperimeter of the triangle, the area A is,

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.

One half is the irreducible fraction resulting from dividing one (1) by two (2), or the fraction resulting from dividing any number by its double.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer that is 2 or more, there exist positive integers , , and for which

In mathematics and statistics, sums of powers occur in a number of contexts:

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

<span class="mw-page-title-main">Fermat's right triangle theorem</span> Rational right triangles cannot have square area

Fermat's right triangle theorem is a non-existence proof in number theory, published in 1670 among the works of Pierre de Fermat, soon after his death. It is the only complete proof given by Fermat. It has several equivalent formulations, one of which was stated in 1225 by Fibonacci. In its geometric forms, it states:

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span>

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

<span class="mw-page-title-main">Inverse Pythagorean theorem</span> Relation between the side lengths and altitude of a right triangle

In geometry, the inverse Pythagorean theorem is as follows:

References

  1. 1 2 Dickson, L. E., History of the Theory of Numbers, Volume II: Diophantine Analysis, Chelsea Publ. Co., 1952, pp. 688–691.
  2. Gardner, M. Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American. New York: Knopf, 1979, pp. 6264.
  3. Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, Dover Publ., 1996.
  4. GoGeometry, , Accessed 2012-07-08.
  5. Voles, Roger (July 1999), "83.27 Integer solutions of ", The Mathematical Gazette , 83 (497): 269–271, doi:10.2307/3619056, JSTOR   3619056
  6. Richinick, Jennifer (July 2008), "92.48 The upside-down Pythagorean theorem", The Mathematical Gazette , 92 (524): 313–316, doi:10.1017/s0025557200183275, JSTOR   27821792
  7. Meyer, Daniel; Meyer, Jeanine; Meyer, Aviva (March 2000), "Teaching mathematical thinking through origami", Academic.Writing: Interdisciplinary Perspectives on Communication Across the Curriculum, 1 (9), doi:10.37514/awr-j.2000.1.9.41 ; see in particular section "Dividing into thirds"