Crossed ladders problem

Last updated

The crossed ladders problem is a puzzle of unknown origin that has appeared in various publications and regularly reappears in Web pages and Usenet discussions.

Contents

The problem

Crossed ladders of lengths a and b. h is half the harmonic mean of A and B; equivalently, the reciprocals of A and B sum to the reciprocal of h (the optic equation). Given a, b, and h, find w. CrossedLadders.svg
Crossed ladders of lengths a and b. h is half the harmonic mean of A and B; equivalently, the reciprocals of A and B sum to the reciprocal of h (the optic equation). Given a, b, and h, find w.

Two ladders of lengths a and b lie oppositely across an alley, as shown in the figure. The ladders cross at a height of h above the alley floor. What is the width of the alley?

Martin Gardner presents and discusses the problem [1] in his book of mathematical puzzles published in 1979 and cites references to it as early as 1895. The crossed ladders problem may appear in various forms, with variations in name, using various lengths and heights, or requesting unusual solutions such as cases where all values are integers. Its charm has been attributed to a seeming simplicity which can quickly devolve into an "algebraic mess" (characterization attributed by Gardner to D. F. Church).

Solution

The problem description implies that w > 0, that a > w, and b > w, that h > 0, and that A > h,B > h, where A and B are the heights of the walls where sides of lengths b and a respectively lean (as in the above graph).

Both solution methods below rely on the property that A, B, and H satisfy the optic equation, i.e. , which can be seen as follows:

Divide the baseline into two parts at the point where it meets , and call the left and right parts and , respectively. The angle where meets is common to two similar triangles with bases and respectively. The angle where meets is common to two similar triangles with bases and respectively. This tells us that
which we can then re-arrange (using ) to get

First method

Two statements of the Pythagorean theorem (see figure above)

and
can be subtracted one from the other to eliminate w, and the result can be combined with with alternately A or B solved out to yield the quartic equations [2]
These can be solved algebraically or numerically for the wall heights A and B, and the Pythagorean theorem on one of the triangles can be used to solve for the width w.

Second method

The problem may be reduced to the quartic equation x 3(x  c)  1 = 0, which can be solved by approximation methods, as suggested by Gardner, or the quartic may be solved in closed form by Ferrari's method. Once x is obtained, the width of the alley is readily calculated. A derivation of the quartic is given below, along with the desired width in terms of the quartic solution. Note that the requested unknown, w, does not appear directly in most of the derivation.

From we get
.
Using the Pythagorean theorem, we can see that
and .
By isolating w² on both equations, we see that
which can be rearranged and factored into
.
Square (Eq 2) and combine with (Eq 1)
Rearrange to get
Then
Now, combine with (Eq 1)
Finally
Let
Then
(same as Eq 3 with the sides reversed)
The above fourth power equation can be solved for x using any available method. The width of the alley is then found by using the value found for x: The identity
can be used to find A, and w can finally be found by

A quartic equation has four solutions, and only one solution for this equation matches the problem as presented. Another solution is for a case where one ladder (and wall) is below ground level and the other above ground level. In this case the ladders do not actually cross, but their extensions do so at the specified height. The other two solutions are a pair of conjugate complex numbers. The equation does not have the ladder lengths explicitly defined, only the difference of their squares, so one could take the length as any value that makes them cross, and the wall spacing would be defined as between where the ladders intersect the walls.

Lcharts2&3.png

As the wall separation approaches zero, the height of the crossing approaches This is because (proven at the start) implies and as w goes to zero b goes to A and a goes to B according to the top diagram.

As the solutions to the equation involve square roots, negative roots are equally valid. They can be interpreted as both ladders and walls being below ground level and with them in opposing sense, they can be interchanged.

The complex solutions can be interpreted as wall A leaning to the left or right and wall B below ground, so the intersection is between extensions to the ladders as shown for the case a, b, h = 3, 2, 1. The ladders a and b and are not as specified. The base w is a function of A, B, and h and the complex values of A and B can be found from the alternative quartic

with D being for one wall and for the other (±5 in the example). Note that the imaginary solutions are horizontal and the real ones are vertical. The value D is found in the solution as the real part of the difference in the squares of the complex coordinates of the two walls. The imaginary part = 2XaYa = 2XbYb (walls a and b). The short ladder in the complex solution in the 3,2,1 case appears to be tilted at 45 degrees, but actually slightly less with a tangent of 0.993. Other combinations of ladder lengths and crossover height have comparable complex solutions. With combination 105,87,35 the short ladder tangent is approximately 0.75.

Integer solutions

There are solutions in which all parameters are integers. [3] For example, [2] (a, b, A, B, w1, w2, w, h) = (119, 70, 42, 105, 16, 40, 56, 30). Such solutions involve Pythagorean triples for the two right triangles with sides (A, w, b) and (B, w, a) and integer solutions of the optic equation

Application to paper folding

Folding a rectangular sheet of paper into thirds using the crossed ladders problem Folding paper into thirds.svg
Folding a rectangular sheet of paper into thirds using the crossed ladders problem

The optic equation of the crossed ladders problem can be applied to folding rectangular paper into three equal parts:

1/1/2 + 1/1 = 1/h   2 + 1 = 1/h  h = 1/2 + 1 = 1/3

One side (left in the illustration) is partially folded in half and pinched to leave a mark. The intersection of a line from this mark to an opposite corner (red) with a diagonal (blue) is exactly one third from the bottom edge. The top edge can then be folded down to meet the intersection. [4]

It is also exactly one third horizontally from the left edge; folding the right edge to meet the intersection lets the paper be folded into thirds lengthwise.

Similarly, folding the left side twice to get quarters lets one fold the sheet into five equal parts:

1/1/4 + 1/1 = 1/h   4 + 1 = 1/h  h = 1/4 + 1 = 1/5

and folding it thrice to get eights lets one fold the sheet into nine equal parts, etc.:

1/1/8 + 1/1 = 1/h   8 + 1 = 1/h  h = 1/8 + 1 = 1/9

Extended crossed ladders theorem

Crossed ladder problem, extended to triangles.jpg

The crossed ladders theorem was extended to crossed ladders within a triangle. In 2002, Harold Joseph Stengel (1947–2007), an American secondary school teacher of mathematics, proved the extended theorem. [5]

Let AC be the base of a triangle ABC. Let ladder (line) AD have its foot at A and intersect BC at D; likewise, let ladder CE have its foot at C and intersect AB at E. Let AD intersect CE at F. Extend parallel lines from the points E, B, F, and D, intersecting AC at the points I, G, J, and H, respectively. Then

1/EI + 1/DH = 1/FJ + 1/BG

whence it follows that

1/area (△ AEC) + 1/area (△ ADC) = 1/area (△ AFC) + 1/area (△ ABC).

See also

Related Research Articles

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

<span class="mw-page-title-main">Right triangle</span> When one angle is a 90-degree angle

A right triangle or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle, is a triangle in which one angle is a right angle, i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector and the angle bisector.

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form

<span class="mw-page-title-main">Quartic equation</span> Polynomial equation

In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Related rates</span> Problems that make use of the relations to rates of change

In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad applications in these fields. Differentiation with respect to time or one of the other variables requires application of the chain rule, since most problems involve several variables.

<span class="mw-page-title-main">Hypergeometric function</span> Special function defined by a hypergeometric series

In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

In algebraic geometry, a quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation:

<span class="mw-page-title-main">Diophantus II.VIII</span>

The eighth problem of the second book of Arithmetica by Diophantus is to divide a square into a sum of two squares.

<span class="mw-page-title-main">Steiner ellipse</span> Circumellipse of a triangle whose center is the triangles centroid

In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Inellipse</span> Ellipse tangent to all sides of a triangle

In triangle geometry, an inellipse is an ellipse that touches the three sides of a triangle. The simplest example is the incircle. Further important inellipses are the Steiner inellipse, which touches the triangle at the midpoints of its sides, the Mandart inellipse and Brocard inellipse. For any triangle there exist an infinite number of inellipses.

<span class="mw-page-title-main">Optic equation</span>

In number theory, the optic equation is an equation that requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c:

<span class="mw-page-title-main">Inverse Pythagorean theorem</span> Relation between the side lengths and altitude of a right triangle

In geometry, the inverse Pythagorean theorem is as follows:

References

  1. Gardner, Martin (1979). Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American . New York: Knopf. pp.  62–64. ISBN   9780394502076.
  2. 1 2 Weisstein, Eric W. "Crossed Ladders Problem". MathWorld - A Wolfram Web Resource.
  3. Bremner, A.; Høibakk, R.; Lukkassen, D. (2009). "Crossed ladders and Euler's quartic" (PDF). Annales Mathematicae et Informaticae. 36: 29–41. MR   2580898.
  4. Meyer, Daniel; Meyer, Jeanine; Meyer, Aviva (March 2000). "Teaching mathematical thinking through origami". Academic.Writing: Interdisciplinary Perspectives on Communication Across the Curriculum. 1 (9): 1. doi:10.37514/awr-j.2000.1.9.41.; see in particular section "Dividing into thirds"
  5. Stengel, H. (2002–2003). "Letter to the Editor: The extended crossed ladders theorem" (PDF). Mathematical Spectrum. 35 (1): 18–20.