The Trachtenberg system is a system of rapid mental calculation. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. It was developed by the Russian engineer Jakow Trachtenberg in order to keep his mind occupied while being in a Nazi concentration camp.
The rest of this article presents some methods devised by Trachtenberg. Some of the algorithms Trachtenberg developed are ones for general multiplication, division and addition. Also, the Trachtenberg system includes some specialised methods for multiplying small numbers between 5 and 13.
The section on addition demonstrates an effective method of checking calculations that can also be applied to multiplication.
The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplicands. This is held as a temporary result. To find the next to last digit, we need everything that influences this digit: The temporary result, the last digit of times the next-to-last digit of , as well as the next-to-last digit of times the last digit of . This calculation is performed, and we have a temporary result that is correct in the final two digits.
In general, for each position in the final result, we sum for all :
People can learn this algorithm and thus multiply four-digit numbers in their head – writing down only the final result. They would write it out starting with the rightmost digit and finishing with the leftmost.
Trachtenberg defined this algorithm with a kind of pairwise multiplication where two digits are multiplied by one digit, essentially only keeping the middle digit of the result. By performing the above algorithm with this pairwise multiplication, even fewer temporary results need to be held.
Example:
To find the first (rightmost) digit of the answer, start at the first digit of the multiplicand
To find the second digit of the answer, start at the second digit of the multiplicand:
To find the third digit of the answer, start at the third digit of the multiplicand:
To find the fourth digit of the answer, start at the fourth digit of the multiplicand:
Continue with the same method to obtain the remaining digits.
Trachtenberg called this the 2 Finger Method. The calculations for finding the fourth digit from the example above are illustrated at right. The arrow from the nine will always point to the digit of the multiplicand directly above the digit of the answer you wish to find, with the other arrows each pointing one digit to the right. Each arrow head points to a UT Pair, or Product Pair. The vertical arrow points to the product where we will get the Units digit, and the sloping arrow points to the product where we will get the Tens digits of the Product Pair. If an arrow points to a space with no digit there is no calculation for that arrow. As you solve for each digit you will move each of the arrows over the multiplicand one digit to the left until all of the arrows point to prefixed zeros.
Division in the Trachtenberg System is done much the same as in multiplication but with subtraction instead of addition. Splitting the dividend into smaller Partial Dividends, then dividing this Partial Dividend by only the left-most digit of the divisor will provide the answer one digit at a time. As you solve each digit of the answer you then subtract Product Pairs (UT pairs) and also NT pairs (Number-Tens) from the Partial Dividend to find the next Partial Dividend. The Product Pairs are found between the digits of the answer so far and the divisor. If a subtraction results in a negative number you have to back up one digit and reduce that digit of the answer by one. With enough practice this method can be done in your head.
A method of adding columns of numbers and accurately checking the result without repeating the first operation. An intermediate sum, in the form of two rows of digits, is produced. The answer is obtained by taking the sum of the intermediate results with an L-shaped algorithm. As a final step, the checking method that is advocated both removes the risk of repeating any original errors and identifies the precise column in which an error occurs all at once. It is based on check (or digit) sums, such as the nines-remainder method.
For the procedure to be effective, the different operations used in each stage must be kept distinct, otherwise there is a risk of interference.
When performing any of these multiplication algorithms the following "steps" should be applied.
The answer must be found one digit at a time starting at the least significant digit and moving left. The last calculation is on the leading zero of the multiplicand.
Each digit has a neighbor, i.e., the digit on its right. The rightmost digit's neighbor is the trailing zero.
The 'halve' operation has a particular meaning to the Trachtenberg system. It is intended to mean "half the digit, rounded down" but for speed reasons people following the Trachtenberg system are encouraged to make this halving process instantaneous. So instead of thinking "half of seven is three and a half, so three" it's suggested that one thinks "seven, three". This speeds up calculation considerably. In this same way the tables for subtracting digits from 10 or 9 are to be memorized.
And whenever the rule calls for adding half of the neighbor, always add 5 if the current digit is odd. This makes up for dropping 0.5 in the next digit's calculation.
Digits and numbers are two different notions. The number T consists of n digits cn ... c1.
Proof
Rule:
Example: 8624 × 2
Working from left to right:
Example: 76892 × 2
Working from left to right:
Proof
Rule:
Example: 492 × 3 = 1476
Working from right to left:
Proof
Rule:
Example: 346 × 4 = 1384
Working from right to left:
Proof
Rule:
Example: 42×5=210
Proof
Rule:
Example: 357 × 6 = 2142
Working right to left:
Proof
Rule:
Example: 693 × 7 = 4,851
Working from right to left:
Proof
Rule:
Example: 456 × 8 = 3648
Working from right to left:
Proof
Rule:
For rules 9, 8, 4, and 3 only the first digit is subtracted from 10. After that each digit is subtracted from nine instead.
Example: 2,130 × 9 = 19,170
Working from right to left:
Add 0 (zero) as the rightmost digit.
Proof
Proof
Rule:
Example:
To illustrate:
Thus,
Proof
Rule: to multiply by 12:
Starting from the rightmost digit, double each digit and add the neighbor. (The "neighbor" is the digit on the right.)
If the answer is greater than a single digit, simply carry over the extra digit (which will be a 1 or 2) to the next operation. The remaining digit is one digit of the final result.
Example:
Determine neighbors in the multiplicand 0316:
Proof
The book contains specific algebraic explanations for each of the above operations.
Most of the information in this article is from the original book.
The algorithms/operations for multiplication, etc., can be expressed in other more compact ways that the book does not specify, despite the chapter on algebraic description. [a]
There are many other methods of calculation in mental mathematics. The list below shows a few other methods of calculating, though they may not be entirely mental.
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ), the British signals intelligence agency, by the English mathematician Clifford Cocks. That system was declassified in 1997.
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition.
The quater-imaginary numeral system is a numeral system, first proposed by Donald Knuth in 1960. Unlike standard numeral systems, which use an integer as their bases, it uses the imaginary number as its base. It is able to uniquely represent every complex number using only the digits 0, 1, 2, and 3. Numbers less than zero, which are ordinarily represented with a minus sign, are representable as digit strings in quater-imaginary; for example, the number −1 is represented as "103" in quater-imaginary notation.
The Rabin cryptosystem is a family of public-key encryption schemes based on a trapdoor function whose security, like that of RSA, is related to the difficulty of integer factorization.
Casting out nines is any of three arithmetical procedures:
In modular arithmetic computation, Montgomery modular multiplication, more commonly referred to as Montgomery multiplication, is a method for performing fast modular multiplication. It was introduced in 1985 by the American mathematician Peter L. Montgomery.
A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix, or base, and they are all different, this article presents rules and examples only for decimal, or base 10, numbers. Martin Gardner explained and popularized these rules in his September 1962 "Mathematical Games" column in Scientific American.
In mathematical notation for numbers, a signed-digit representation is a positional numeral system with a set of signed digits used to encode the integers.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.
In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.
The Blum–Goldwasser (BG) cryptosystem is an asymmetric key encryption algorithm proposed by Manuel Blum and Shafi Goldwasser in 1984. Blum–Goldwasser is a probabilistic, semantically secure cryptosystem with a constant-size ciphertext expansion. The encryption algorithm implements an XOR-based stream cipher using the Blum-Blum-Shub (BBS) pseudo-random number generator to generate the keystream. Decryption is accomplished by manipulating the final state of the BBS generator using the private key, in order to find the initial seed and reconstruct the keystream.
Homomorphic encryption is a form of encryption that allows computations to be performed on encrypted data without first having to decrypt it. The resulting computations are left in an encrypted form which, when decrypted, result in an output that is identical to that produced had the operations been performed on the unencrypted data. Homomorphic encryption can be used for privacy-preserving outsourced storage and computation. This allows data to be encrypted and outsourced to commercial cloud environments for processing, all while encrypted.
In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of prime order p is isomorphic to , the ring of p-adic integers. They have a highly non-intuitive structure upon first glance because their additive and multiplicative structure depends on an infinite set of recursive formulas which do not behave like addition and multiplication formulas for standard p-adic integers.
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x3 ≡ p is solvable if and only if x3 ≡ q is solvable.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.
In modular arithmetic, Barrett reduction is a reduction algorithm introduced in 1986 by P.D. Barrett.
In mathematics, a profinite integer is an element of the ring
In number theory, a perfect digital invariant (PDI) is a number in a given number base () that is the sum of its own digits each raised to a given power ().
This section's use of external links may not follow Wikipedia's policies or guidelines.(July 2022) |