In number theory, the Lagarias arithmetic derivative or number derivative is a function defined for integers, based on prime factorization, by analogy with the product rule for the derivative of a function that is used in mathematical analysis.
There are many versions of "arithmetic derivatives", including the one discussed in this article (the Lagarias arithmetic derivative), such as Ihara's arithmetic derivative and Buium's arithmetic derivatives.
The arithmetic derivative was introduced by Spanish mathematician Josè Mingot Shelly in 1911. [1] [2] The arithmetic derivative also appeared in the 1950 Putnam Competition. [3]
For natural numbers n, the arithmetic derivative D(n) [note 1] is defined as follows:
Edward J. Barbeau extended the domain to all integers by showing that the choice D(−n) = −D(n) uniquely extends the domain to the integers and is consistent with the product formula. Barbeau also further extended it to the rational numbers, showing that the familiar quotient rule gives a well-defined derivative on :
Victor Ufnarovski and Bo Åhlander expanded it to the irrationals that can be written as the product of primes raised to arbitrary rational powers, allowing expressions like to be computed. [6]
The arithmetic derivative can also be extended to any unique factorization domain (UFD), [6] such as the Gaussian integers and the Eisenstein integers, and its associated field of fractions. If the UFD is a polynomial ring, then the arithmetic derivative is the same as the derivation over said polynomial ring. For example, the regular derivative is the arithmetic derivative for the rings of univariate real and complex polynomial and rational functions, which can be proven using the fundamental theorem of algebra.
The arithmetic derivative has also been extended to the ring of integers modulo n. [7]
The Leibniz rule implies that D(0) = 0 (take m = n = 0) and D(1) = 0 (take m = n = 1).
The power rule is also valid for the arithmetic derivative. For any integers k and n ≥ 0:
This allows one to compute the derivative from the prime factorization of an integer, (in which is the p-adic valuation of x) :
This shows that if one knows the derivative for all prime numbers, then the derivative is fully known. In fact, the family of arithmetic partial derivative relative to the prime number , defined by for all primes , except for for which is a basis of the space of derivatives. Note that, for this derivative, we have .
Usually, one takes the derivative such that for all primes p, so that
With this derivative, we have for example:
or
And the sequence of number derivatives for x = 0, 1, 2, … begins (sequence A003415 in the OEIS ):
The logarithmic derivative is a totally additive function:
Let be a prime. The arithmetic partial derivative of with respect to is defined as So, the arithmetic derivative of is given as
Let be a nonempty set of primes. The arithmetic subderivative of with respect to is defined as If is the set of all primes, then the usual arithmetic derivative. If , then the arithmetic partial derivative.
An arithmetic function is Leibniz-additive if there is a totally multiplicative function such that for all positive integers and . A motivation for this concept is the fact that Leibniz-additive functions are generalizations of the arithmetic derivative ; namely, is Leibniz-additive with .
The function given in Section 3.5 of the book by Sandor and Atanassov is, in fact, exactly the same as the usual arithmetic derivative .
E. J. Barbeau examined bounds on the arithmetic derivative [8] and found that
and
where Ω(n), a prime omega function, is the number of prime factors in n. In both bounds above, equality always occurs when n is a power of 2.
Dahl, Olsson and Loiko found the arithmetic derivative of natural numbers is bounded by [9]
where p is the least prime in n and equality holds when n is a power of p.
Alexander Loiko, Jonas Olsson and Niklas Dahl found that it is impossible to find similar bounds for the arithmetic derivative extended to rational numbers by proving that between any two rational numbers there are other rationals with arbitrary large or small derivatives (note that this means that the arithmetic derivative is not a continuous function from to ).
We have
and
for any δ > 0, where
Victor Ufnarovski and Bo Åhlander have detailed the function's connection to famous number-theoretic conjectures like the twin prime conjecture, the prime triples conjecture, and Goldbach's conjecture. For example, Goldbach's conjecture would imply, for each k > 1 the existence of an n so that D(n) = 2k. The twin prime conjecture would imply that there are infinitely many k for which D2(k) = 1. [6]
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation, or, equivalently,
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity of change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation.
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are
In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.
In number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b:
In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In calculus, the product rule is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.
Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem.
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.
In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.