In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy.
The Cauchy product may apply to infinite series [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [ excessive citations ] or power series. [12] [13] When people apply it to finite sequences [14] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution).
Convergence issues are discussed in the next section.
Let and be two infinite series with complex terms. The Cauchy product of these two infinite series is defined by a discrete convolution as follows:
Consider the following two power series
with complex coefficients and . The Cauchy product of these two power series is defined by a discrete convolution as follows:
Let (an)n≥0 and (bn)n≥0 be real or complex sequences. It was proved by Franz Mertens that, if the series converges to A and converges to B, and at least one of them converges absolutely, then their Cauchy product converges to AB. [15] The theorem is still valid in a Banach algebra (see first line of the following proof).
It is not sufficient for both series to be convergent; if both sequences are conditionally convergent, the Cauchy product does not have to converge towards the product of the two series, as the following example shows:
Consider the two alternating series with
which are only conditionally convergent (the divergence of the series of the absolute values follows from the direct comparison test and the divergence of the harmonic series). The terms of their Cauchy product are given by
for every integer n ≥ 0. Since for every k ∈ {0, 1, ..., n} we have the inequalities k + 1 ≤ n + 1 and n – k + 1 ≤ n + 1, it follows for the square root in the denominator that √(k + 1)(n − k + 1) ≤ n +1, hence, because there are n + 1 summands,
for every integer n ≥ 0. Therefore, cn does not converge to zero as n → ∞, hence the series of the (cn)n≥0 diverges by the term test.
For simplicity, we will prove it for complex numbers. However, the proof we are about to give is formally identical for an arbitrary Banach algebra (not even commutativity or associativity is required).
Assume without loss of generality that the series converges absolutely. Define the partial sums
with
Then
by rearrangement, hence
| (1) |
Fix ε > 0. Since by absolute convergence, and since Bn converges to B as n → ∞, there exists an integer N such that, for all integers n ≥ N,
| (2) |
(this is the only place where the absolute convergence is used). Since the series of the (an)n≥0 converges, the individual an must converge to 0 by the term test. Hence there exists an integer M such that, for all integers n ≥ M,
| (3) |
Also, since An converges to A as n → ∞, there exists an integer L such that, for all integers n ≥ L,
| (4) |
Then, for all integers n ≥ max{L, M + N}, use the representation ( 1 ) for Cn, split the sum in two parts, use the triangle inequality for the absolute value, and finally use the three estimates ( 2 ), ( 3 ) and ( 4 ) to show that
By the definition of convergence of a series, Cn → AB as required.
In cases where the two sequences are convergent but not absolutely convergent, the Cauchy product is still Cesàro summable. [16] Specifically:
If , are real sequences with and then
This can be generalised to the case where the two sequences are not convergent but just Cesàro summable:
For and , suppose the sequence is summable with sum A and is summable with sum B. Then their Cauchy product is summable with sum AB.
All of the foregoing applies to sequences in (complex numbers). The Cauchy product can be defined for series in the spaces (Euclidean spaces) where multiplication is the inner product. In this case, we have the result that if two series converge absolutely then their Cauchy product converges absolutely to the inner product of the limits.
Let such that (actually the following is also true for but the statement becomes trivial in that case) and let be infinite series with complex coefficients, from which all except the th one converge absolutely, and the th one converges. Then the limit
exists and we have:
Because
the statement can be proven by induction over : The case for is identical to the claim about the Cauchy product. This is our induction base.
The induction step goes as follows: Let the claim be true for an such that , and let be infinite series with complex coefficients, from which all except the th one converge absolutely, and the -th one converges. We first apply the induction hypothesis to the series . We obtain that the series
converges, and hence, by the triangle inequality and the sandwich criterion, the series
converges, and hence the series
converges absolutely. Therefore, by the induction hypothesis, by what Mertens proved, and by renaming of variables, we have:
Therefore, the formula also holds for .
A finite sequence can be viewed as an infinite sequence with only finitely many nonzero terms, or in other words as a function with finite support. For any complex-valued functions f, g on with finite support, one can take their convolution:
Then is the same thing as the Cauchy product of and .
More generally, given a monoid S, one can form the semigroup algebra of S, with the multiplication given by convolution. If one takes, for example, , then the multiplication on is a generalization of the Cauchy product to higher dimension.
The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".
In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.
A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.
In mathematics, a power series is an infinite series of the form
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if
In probability theory, the law of large numbers (LLN) is a mathematical theorem that states that the average of the results obtained from a large number of independent and identical random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.
The sum of the reciprocals of all prime numbers diverges; that is:
In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.
In mathematics, a bump function is a function on a Euclidean space which is both smooth and compactly supported. The set of all bump functions with domain forms a vector space, denoted or The dual space of this space endowed with a suitable topology is the space of distributions.
In mathematics, the exponential function can be characterized in many ways. The following characterizations (definitions) are most common. This article discusses why each characterization makes sense, and why the characterizations are equivalent to each other. As a special case of these considerations, it will be demonstrated that the three most common definitions given for the mathematical constant e are equivalent to each other.
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, or diverges. This implies that a series of real numbers is absolutely convergent if and only if it is unconditionally convergent.
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence of non-negative real numbers, the series converges if and only if the "condensed" series converges. Moreover, if they converge, the sum of the condensed series is no more than twice as large as the sum of the original.
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and
In mathematics, the field of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges, corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity and other similar asymptotic expansions.