Schwarz lemma

Last updated

In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions from the open unit disk to itself. The lemma is less celebrated than deeper theorems, such as the Riemann mapping theorem, which it helps to prove. It is, however, one of the simplest results capturing the rigidity of holomorphic functions.

Contents

Statement

Let be the open unit disk in the complex plane centered at the origin, and let be a holomorphic map such that and on .

Then for all , and .

Moreover, if for some non-zero or , then for some with . [1]

Proof

The proof is a straightforward application of the maximum modulus principle on the function

which is holomorphic on the whole of , including at the origin (because is differentiable at the origin and fixes zero). Now if denotes the closed disk of radius centered at the origin, then the maximum modulus principle implies that, for , given any , there exists on the boundary of such that

As we get .

Moreover, suppose that for some non-zero , or . Then, at some point of . So by the maximum modulus principle, is equal to a constant such that . Therefore, , as desired.

SchwarzPick theorem

A variant of the Schwarz lemma, known as the SchwarzPick theorem (after Georg Pick), characterizes the analytic automorphisms of the unit disc, i.e. bijective holomorphic mappings of the unit disc to itself:

Let be holomorphic. Then, for all ,

and, for all ,

The expression

is the distance of the points , in the Poincaré metric, i.e. the metric in the Poincaré disc model for hyperbolic geometry in dimension two. The SchwarzPick theorem then essentially states that a holomorphic map of the unit disk into itself decreases the distance of points in the Poincaré metric. If equality holds throughout in one of the two inequalities above (which is equivalent to saying that the holomorphic map preserves the distance in the Poincaré metric), then must be an analytic automorphism of the unit disc, given by a Möbius transformation mapping the unit disc to itself.

An analogous statement on the upper half-plane can be made as follows:

Let be holomorphic. Then, for all ,

This is an easy consequence of the SchwarzPick theorem mentioned above: One just needs to remember that the Cayley transform maps the upper half-plane conformally onto the unit disc . Then, the map is a holomorphic map from onto . Using the SchwarzPick theorem on this map, and finally simplifying the results by using the formula for , we get the desired result. Also, for all ,

If equality holds for either the one or the other expressions, then must be a Möbius transformation with real coefficients. That is, if equality holds, then

with and .

Proof of SchwarzPick theorem

The proof of the SchwarzPick theorem follows from Schwarz's lemma and the fact that a Möbius transformation of the form

maps the unit circle to itself. Fix and define the Möbius transformations

Since and the Möbius transformation is invertible, the composition maps to and the unit disk is mapped into itself. Thus we can apply Schwarz's lemma, which is to say

Now calling (which will still be in the unit disk) yields the desired conclusion

To prove the second part of the theorem, we rearrange the left-hand side into the difference quotient and let tend to .

The Schwarz–Ahlfors–Pick theorem provides an analogous theorem for hyperbolic manifolds.

De Branges' theorem, formerly known as the Bieberbach Conjecture, is an important extension of the lemma, giving restrictions on the higher derivatives of at in case is injective; that is, univalent.

The Koebe 1/4 theorem provides a related estimate in the case that is univalent.

See also

Related Research Articles

<span class="mw-page-title-main">Riemann mapping theorem</span>

In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk

The Cauchy–Schwarz inequality is considered one of the most important and widely used inequalities in mathematics.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for complex holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth.

In complex analysis, Liouville's theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function for which there exists a positive number such that for all in is constant. Equivalently, non-constant holomorphic functions on have unbounded images.

In complex analysis, the Hardy spacesHp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz, who named them after G. H. Hardy, because of the paper. In real analysis Hardy spaces are certain spaces of distributions on the real line, which are boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p < ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved.

The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables, that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function is n-tuples of complex numbers, classically studied on the complex coordinate space .

In mathematics, the Schwarzian derivative is an operator similar to the derivative which is invariant under Möbius transformations. Thus, it occurs in the theory of the complex projective line, and in particular, in the theory of modular forms and hypergeometric functions. It plays an important role in the theory of univalent functions, conformal mapping and Teichmüller spaces. It is named after the German mathematician Hermann Schwarz.

In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem, is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof Thorin.

In mathematics, the Schwarz–Ahlfors–Pick theorem is an extension of the Schwarz lemma for hyperbolic geometry, such as the Poincaré half-plane model.

In complex analysis, a branch of mathematics, the Koebe 1/4 theorem states the following:

Koebe Quarter Theorem. The image of an injective analytic function from the unit disk onto a subset of the complex plane contains the disk whose center is and whose radius is .

In complex analysis, given initial data consisting of points in the complex unit disc and target data consisting of points in , the Nevanlinna–Pick interpolation problem is to find a holomorphic function that interpolates the data, that is for all ,

<span class="mw-page-title-main">Riemann sphere</span> Model of the extended complex plane plus a point at infinity

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

In mathematics, the Denjoy–Wolff theorem is a theorem in complex analysis and dynamical systems concerning fixed points and iterations of holomorphic mappings of the unit disc in the complex numbers into itself. The result was proved independently in 1926 by the French mathematician Arnaud Denjoy and the Dutch mathematician Julius Wolff.

In mathematics, Grunsky's theorem, due to the German mathematician Helmut Grunsky, is a result in complex analysis concerning holomorphic univalent functions defined on the unit disk in the complex numbers. The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk |z| < r onto a starlike domain for r ≤ tanh π/4. The largest r for which this is true is called the radius of starlikeness of the function.

<span class="mw-page-title-main">Grunsky matrix</span>

In complex analysis and geometric function theory, the Grunsky matrices, or Grunsky operators, are infinite matrices introduced in 1939 by Helmut Grunsky. The matrices correspond to either a single holomorphic function on the unit disk or a pair of holomorphic functions on the unit disk and its complement. The Grunsky inequalities express boundedness properties of these matrices, which in general are contraction operators or in important special cases unitary operators. As Grunsky showed, these inequalities hold if and only if the holomorphic function is univalent. The inequalities are equivalent to the inequalities of Goluzin, discovered in 1947. Roughly speaking, the Grunsky inequalities give information on the coefficients of the logarithm of a univalent function; later generalizations by Milin, starting from the Lebedev–Milin inequality, succeeded in exponentiating the inequalities to obtain inequalities for the coefficients of the univalent function itself. The Grunsky matrix and its associated inequalities were originally formulated in a more general setting of univalent functions between a region bounded by finitely many sufficiently smooth Jordan curves and its complement: the results of Grunsky, Goluzin and Milin generalize to that case.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

In mathematics, the Douady–Earle extension, named after Adrien Douady and Clifford Earle, is a way of extending homeomorphisms of the unit circle in the complex plane to homeomorphisms of the closed unit disk, such that the extension is a diffeomorphism of the open disk. The extension is analytic on the open disk. The extension has an important equivariance property: if the homeomorphism is composed on either side with a Möbius transformation preserving the unit circle the extension is also obtained by composition with the same Möbius transformation. If the homeomorphism is quasisymmetric, the diffeomorphism is quasiconformal. An extension for quasisymmetric homeomorphisms had previously been given by Lars Ahlfors and Arne Beurling; a different equivariant construction had been given in 1985 by Pekka Tukia. Equivariant extensions have important applications in Teichmüller theory; for example, they lead to a quick proof of the contractibility of the Teichmüller space of a Fuchsian group.

References

  1. Theorem 5.34 in Rodriguez, Jane P. Gilman, Irwin Kra, Rubi E. (2007). Complex analysis : in the spirit of Lipman Bers ([Online] ed.). New York: Springer. p. 95. ISBN   978-0-387-74714-9.

This article incorporates material from Schwarz lemma on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.