In mathematics, there are many senses in which a sequence or a series is said to be convergent. This article describes various modes (senses or species) of convergence in the settings where they are defined. For a list of modes of convergence, see Modes of convergence (annotated index)
Each of the following objects is a special case of the types preceding it: sets, topological spaces, uniform spaces, topological abelian group, normed spaces, Euclidean spaces, and the real/complex numbers. Also, any metric space is a uniform space.
Convergence can be defined in terms of sequences in first-countable spaces. Nets are a generalization of sequences that are useful in spaces which are not first countable. Filters further generalize the concept of convergence.
In metric spaces, one can define Cauchy sequences. Cauchy nets and filters are generalizations to uniform spaces. Even more generally, Cauchy spaces are spaces in which Cauchy filters may be defined. Convergence implies "Cauchy convergence", and Cauchy convergence, together with the existence of a convergent subsequence implies convergence. The concept of completeness of metric spaces, and its generalizations is defined in terms of Cauchy sequences.
In a topological abelian group, convergence of a series is defined as convergence of the sequence of partial sums. An important concept when considering series is unconditional convergence, which guarantees that the limit of the series is invariant under permutations of the summands.
In a normed vector space, one can define absolute convergence as convergence of the series (). Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a subsequence of the partial sums of the original series. The convergence of each absolutely convergent series is an equivalent condition for a normed vector space to be Banach (i.e.: complete).
Absolute convergence and convergence together imply unconditional convergence, but unconditional convergence does not imply absolute convergence in general, even if the space is Banach, although the implication holds in .
The most basic type of convergence for a sequence of functions (in particular, it does not assume any topological structure on the domain of the functions) is pointwise convergence. It is defined as convergence of the sequence of values of the functions at every point. If the functions take their values in a uniform space, then one can define pointwise Cauchy convergence, uniform convergence, and uniform Cauchy convergence of the sequence.
Pointwise convergence implies pointwise Cauchy convergence, and the converse holds if the space in which the functions take their values is complete. Uniform convergence implies pointwise convergence and uniform Cauchy convergence. Uniform Cauchy convergence and pointwise convergence of a subsequence imply uniform convergence of the sequence, and if the codomain is complete, then uniform Cauchy convergence implies uniform convergence.
If the domain of the functions is a topological space and the codomain is a uniform space, local uniform convergence (i.e. uniform convergence on a neighborhood of each point) and compact (uniform) convergence (i.e. uniform convergence on all compact subsets) may be defined. "Compact convergence" is always short for "compact uniform convergence," since "compact pointwise convergence" would mean the same thing as "pointwise convergence" (points are always compact).
Uniform convergence implies both local uniform convergence and compact convergence, since both are local notions while uniform convergence is global. If X is locally compact (even in the weakest sense: every point has compact neighborhood), then local uniform convergence is equivalent to compact (uniform) convergence. Roughly speaking, this is because "local" and "compact" connote the same thing.
Pointwise and uniform convergence of series of functions are defined in terms of convergence of the sequence of partial sums.
For functions taking values in a normed linear space, absolute convergence refers to convergence of the series of positive, real-valued functions . "Pointwise absolute convergence" is then simply pointwise convergence of .
Normal convergence is convergence of the series of non-negative real numbers obtained by taking the uniform (i.e. "sup") norm of each function in the series (uniform convergence of ). In Banach spaces, pointwise absolute convergence implies pointwise convergence, and normal convergence implies uniform convergence.
For functions defined on a topological space, one can define (as above) local uniform convergence and compact (uniform) convergence in terms of the partial sums of the series. If, in addition, the functions take values in a normed linear space, then local normal convergence (local, uniform, absolute convergence) and compact normal convergence (absolute convergence on compact sets) can be defined.
Normal convergence implies both local normal convergence and compact normal convergence. And if the domain is locally compact (even in the weakest sense), then local normal convergence implies compact normal convergence.
If one considers sequences of measurable functions, then several modes of convergence that depend on measure-theoretic, rather than solely topological properties, arise. This includes pointwise convergence almost-everywhere, convergence in p-mean and convergence in measure. These are of particular interest in probability theory.
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other. Cauchy sequences are named after Augustin-Louis Cauchy; they may occasionally be known as fundamental sequences.
In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.
In mathematics, a series is, roughly speaking, an addition of infinitely many quantities, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of analysis and topology, where they are used to characterize many important topological properties that, sequences are unable to characterize. Nets are in one-to-one correspondence with filters.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions converges uniformly to a limiting function on a set as the function domain if, given any arbitrarily small positive number , a number can be found such that each of the functions differs from by no more than at every pointin. Described in an informal way, if converges to uniformly, then how quickly the functions approach is "uniform" throughout in the following sense: in order to guarantee that differs from by less than a chosen distance , we only need to make sure that is larger than or equal to a certain , which we can find without knowing the value of in advance. In other words, there exists a number that could depend on but is independent of , such that choosing will ensure that for all . In contrast, pointwise convergence of to merely guarantees that for any given in advance, we can find such that, for that particular, falls within of whenever .
In mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps: where carries the product topology. That means is an additive topological group and a multiplicative topological semigroup.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared.
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.
In mathematics normal convergence is a type of convergence for series of functions. Like absolute-convergence, it has the useful property that it is preserved when the order of summation is changed.
The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of convergence are indicated, formulaically rather than in prose for quick reference, and indepth descriptions and discussions are reserved for their respective articles.
In mathematics, uniform absolute-convergence is a type of convergence for series of functions. Like absolute-convergence, it has the useful property that it is preserved when the order of summation is changed.
In mathematics, a limit is the value that a function approaches as the argument approaches some value. Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. The limit inferior and limit superior provide generalizations of the concept of a limit which are particularly relevant when the limit at a point may not exist.
This is a glossary of concepts and results in real analysis and complex analysis in mathematics.