This article needs additional citations for verification .(January 2023) |
In mathematics, differential Galois theory is the field that studies extensions of differential fields.
Whereas algebraic Galois theory studies extensions of algebraic fields, differential Galois theory studies extensions of differential fields, i.e. fields that are equipped with a derivation, D. Much of the theory of differential Galois theory is parallel to algebraic Galois theory. One difference between the two constructions is that the Galois groups in differential Galois theory tend to be matrix Lie groups, as compared with the finite groups often encountered in algebraic Galois theory.
In mathematics, some types of elementary functions cannot express the indefinite integrals of other elementary functions. A well-known example is , whose indefinite integral is the error function , familiar in statistics. Other examples include the sinc function and .
It's important to note that the concept of elementary functions is merely conventional. If we redefine elementary functions to include the error function, then under this definition, the indefinite integral of would be considered an elementary function. However, no matter how many functions are added to the definition of elementary functions, there will always be functions whose indefinite integrals are not elementary.
Using the theory of differential Galois theory , it is possible to determine which indefinite integrals of elementary functions cannot be expressed as elementary functions. Differential Galois theory is based on the framework of Galois theory. While algebraic Galois theory studies field extensions of fields, differential Galois theory studies extensions of differential fields —fields with a derivation D.
Most of differential Galois theory is analogous to algebraic Galois theory. The significant difference in the structure is that the Galois group in differential Galois theory is an algebraic group, whereas in algebraic Galois theory, it is a profinite group equipped with the Krull topology.
For any differential field F with derivation D, there exists a subfield called the field of constants of F, defined as:
The field of constants contains the prime field of F.
Given two differential fields F and G, G is called a simple differential extension of F if [1] and satisfies
then G is called a logarithmic extension of F.
This has the form of a logarithmic derivative. Intuitively, t can be thought of as the logarithm of some element s in F, corresponding to the usual chain rule. F does not necessarily have a uniquely defined logarithm. Various logarithmic extensions of F can be considered. Similarly, a logarithmic extension satisfies
and a differential extension satisfies
A differential extension or exponential extension becomes a Picard-Vessiot extension when the field has characteristic zero and the constant fields of the extended fields match.
Keeping the above caveat in mind, this element can be regarded as the exponential of an element s in F. Finally, if there is a finite sequence of intermediate fields from F to G with Con(F) = Con(G), such that each extension in the sequence is either a finite algebraic extension, a logarithmic extension, or an exponential extension, then G is called an elementary differential extension .
Consider the homogeneous linear differential equation for :
There exist at most n linearly independent solutions over the field of constants. An extension G of F is a Picard-Vessiot extension for the differential equation (1) if G is generated by all solutions of (1) and satisfies Con(F) = Con(G).
An extension G of F is a Liouville extension if Con(F) = Con(G) is an algebraically closed field, and there exists an increasing chain of subfields
such that each extension Fk+1 : Fk is either a finite algebraic extension, a differential extension, or an exponential extension. A Liouville extension of the rational function field C(x) consists of functions obtained by finite combinations of rational functions, exponential functions, roots of algebraic equations, and their indefinite integrals. Clearly, logarithmic functions, trigonometric functions, and their inverses are Liouville functions over C(x), and especially elementary differential extensions are Liouville extensions.
An example of a function that is contained in an elementary extension over C(x) but not in a Liouville extension is the indefinite integral of .
For a differential field F, if G is a separable algebraic extension of F, the derivation of F uniquely extends to a derivation of G. Hence, G uniquely inherits the differential structure of F.
Suppose F and G are differential fields satisfying Con(F) = Con(G), and G is an elementary differential extension of F. Let a ∈ F and y ∈ G such that Dy = a (i.e., G contains the indefinite integral of a). Then there exist c1, …, cn ∈ Con(F) and u1, …, un, v ∈ F such that
(Liouville's theorem). In other words, only functions whose indefinite integrals are elementary (i.e., at worst contained within the elementary differential extension of F) have the form stated in the theorem. Intuitively, only elementary indefinite integrals can be expressed as the sum of a finite number of logarithms of simple functions.
If G/F is a Picard-Vessiot extension, then G being a Liouville extension of F is equivalent to the differential Galois group having a solvable identity component. [2] Furthermore, G being a Liouville extension of F is equivalent to G being embeddable in some Liouville extension field of F.
Differential Galois theory has numerous applications in mathematics and physics. It is used, for instance, in determining whether a given differential equation can be solved by quadrature (integration). It also has applications in the study of dynamic systems, including the integrability of Hamiltonian systems in classical mechanics.
One significant application is the analysis of integrability conditions for differential equations, which has implications in the study of symmetries and conservation laws in physics.
In mathematics, an elementary function is a function of a single variable that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses.
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".
In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.
In symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra who developed it in 1968.
In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and
In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative that is, itself, not an elementary function. A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. This theorem also provides a basis for the Risch algorithm for determining which elementary functions have elementary antiderivatives.
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.
In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.
In mathematics, Liouville's theorem, originally formulated by French mathematician Joseph Liouville in 1833 to 1841, places an important restriction on antiderivatives that can be expressed as elementary functions.
In the mathematical theory of special functions, Schwarz's list or the Schwartz table is the list of 15 cases found by Hermann Schwarz when hypergeometric functions can be expressed algebraically. More precisely, it is a listing of parameters determining the cases in which the hypergeometric equation has a finite monodromy group, or equivalently has two independent solutions that are algebraic functions. It lists 15 cases, divided up by the isomorphism class of the monodromy group, and was first derived by Schwarz by methods of complex analytic geometry. Correspondingly the statement is not directly in terms of the parameters specifying the hypergeometric equation, but in terms of quantities used to describe certain spherical triangles.
In differential algebra, Picard–Vessiot theory is the study of the differential field extension generated by the solutions of a linear differential equation, using the differential Galois group of the field extension. A major goal is to describe when the differential equation can be solved by quadratures in terms of properties of the differential Galois group. The theory was initiated by Émile Picard and Ernest Vessiot from about 1883 to 1904.
In mathematics, the Liouvillian functions comprise a set of functions including the elementary functions and their repeated integrals. Liouvillian functions can be recursively defined as integrals of other Liouvillian functions.
Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.