Liouvillian function

Last updated

In mathematics, the Liouvillian functions comprise a set of functions including the elementary functions and their repeated integrals. Liouvillian functions can be recursively defined as integrals of other Liouvillian functions.

Contents

More explicitly, a Liouvillian function is a function of one variable which is the composition of a finite number of arithmetic operations (+, −, ×, ÷), exponentials, constants, solutions of algebraic equations (a generalization of nth roots), and antiderivatives. The logarithm function does not need to be explicitly included since it is the integral of .

It follows directly from the definition that the set of Liouvillian functions is closed under arithmetic operations, composition, and integration. It is also closed under differentiation. It is not closed under limits and infinite sums. [ example needed ]

Liouvillian functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841.

Examples

All elementary functions are Liouvillian.

Examples of well-known functions which are Liouvillian but not elementary are the nonelementary antiderivatives, for example:

All Liouvillian functions are solutions of algebraic differential equations, but not conversely. Examples of functions which are solutions of algebraic differential equations but not Liouvillian include: [1]

Examples of functions which are not solutions of algebraic differential equations and thus not Liouvillian include all transcendentally transcendental functions, such as:

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic number</span> Complex number that is a root of a non-zero polynomial in one variable with rational coefficients

An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.

<span class="mw-page-title-main">Antiderivative</span> Concept in calculus

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation, and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

In mathematics, an elementary function is a function of a single variable that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions.

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

In symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra who developed it in 1968.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed in terms of a finite sequence of the algebraic operations of addition, subtraction, multiplication, division, raising to a power, and root extraction.

<span class="mw-page-title-main">Linear differential equation</span> Differential equations that are linear with respect to the unknown function and its derivatives

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form

In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations, and functions, but usually no limit, differentiation, or integration. The set of operations and functions may vary with author and context.

<span class="mw-page-title-main">Transcendental number theory</span> Study of numbers that are not solutions of polynomials with rational coefficients

Transcendental number theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.

In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative that is, itself, not an elementary function. A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. This theorem also provides a basis for the Risch algorithm for determining which elementary functions have elementary antiderivatives.

In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a differentiable function F(x) such that

In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, where the derivation is differentiation with respect to

In mathematics, Liouville's theorem, originally formulated by Joseph Liouville in 1833 to 1841, places an important restriction on antiderivatives that can be expressed as elementary functions.

In mathematical logic, Tarski's high school algebra problem was a question posed by Alfred Tarski. It asks whether there are identities involving addition, multiplication, and exponentiation over the positive integers that cannot be proved using eleven axioms about these operations that are taught in high-school-level mathematics. The question was solved in 1980 by Alex Wilkie, who showed that such unprovable identities do exist.

In differential algebra, Picard–Vessiot theory is the study of the differential field extension generated by the solutions of a linear differential equation, using the differential Galois group of the field extension. A major goal is to describe when the differential equation can be solved by quadratures in terms of properties of the differential Galois group. The theory was initiated by Émile Picard and Ernest Vessiot from about 1883 to 1904.

<span class="mw-page-title-main">Ordinary differential equation</span> Differential equation containing derivatives with respect to only one variable

In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one function(s) of one variable and involves the derivatives of those functions. The term ordinary is used in contrast with the term partial differential equation which may be with respect to more than one independent variable.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. L. Chan, E.S. Cheb-Terrab, "Non-liouvillian solutions for second order Linear ODEs", Proceedings of the 2004 international symposium on Symbolic and algebraic computation (ISSAC '04), 2004, pp. 80–86 doi : 10.1145/1005285.1005299

Further reading