Logarithmic integral function

Last updated

Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .

Contents

Logarithmic integral function plot Logarithmic integral function.svg
Logarithmic integral function plot

Integral representation

The logarithmic integral has an integral representation defined for all positive real numbers x  1 by the definite integral

Here, ln denotes the natural logarithm. The function 1/(ln t) has a singularity at t = 1, and the integral for x > 1 is interpreted as a Cauchy principal value,

Offset logarithmic integral

The offset logarithmic integral or Eulerian logarithmic integral is defined as

As such, the integral representation has the advantage of avoiding the singularity in the domain of integration.

Equivalently,

Special values

The function li(x) has a single positive zero; it occurs at x ≈ 1.45136 92348 83381 05028 39684 85892 02744 94930... OEIS:  A070769 ; this number is known as the Ramanujan–Soldner constant.

≈ 1.045163 780117 492784 844588 889194 613136 522615 578151... OEIS:  A069284

This is where is the incomplete gamma function. It must be understood as the Cauchy principal value of the function.

Series representation

The function li(x) is related to the exponential integral Ei(x) via the equation

which is valid for x > 0. This identity provides a series representation of li(x) as

where γ ≈ 0.57721 56649 01532 ... OEIS:  A001620 is the Euler–Mascheroni constant. A more rapidly convergent series by Ramanujan [1] is

Asymptotic expansion

The asymptotic behavior for x  ∞ is

where is the big O notation. The full asymptotic expansion is

or

This gives the following more accurate asymptotic behaviour:

As an asymptotic expansion, this series is not convergent: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of x are employed. This expansion follows directly from the asymptotic expansion for the exponential integral.

This implies e.g. that we can bracket li as:

for all .

Number theoretic significance

The logarithmic integral is important in number theory, appearing in estimates of the number of prime numbers less than a given value. For example, the prime number theorem states that:

where denotes the number of primes smaller than or equal to .

Assuming the Riemann hypothesis, we get the even stronger: [2]

In fact, the Riemann hypothesis is equivalent to the statement that:

for any .


For small , but the difference changes sign an infinite number of times as increases, and the first time this happens is somewhere between 1019 and 1.4×10316.

See also

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Trigonometric integral</span> Special function defined by an integral

In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

<span class="mw-page-title-main">Airy function</span> Special function in the physical sciences

In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.

<span class="mw-page-title-main">Exponential integral</span> Special function defined by an integral

In mathematics, the exponential integral Ei is a special function on the complex plane.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

<span class="mw-page-title-main">Confluent hypergeometric function</span> Solution of a confluent hypergeometric equation

In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

<span class="mw-page-title-main">Reciprocal gamma function</span>

In mathematics, the reciprocal gamma function is the function

Gregory coefficientsGn, also known as reciprocal logarithmic numbers, Bernoulli numbers of the second kind, or Cauchy numbers of the first kind, are the rational numbers that occur in the Maclaurin series expansion of the reciprocal logarithm

References

  1. Weisstein, Eric W. "Logarithmic Integral". MathWorld .
  2. Abramowitz and Stegun, p. 230, 5.1.20