A differentiable stack is the analogue in differential geometry of an algebraic stack in algebraic geometry. It can be described either as a stack over differentiable manifolds which admits an atlas, or as a Lie groupoid up to Morita equivalence. [1]
Differentiable stacks are particularly useful to handle spaces with singularities (i.e. orbifolds, leaf spaces, quotients), which appear naturally in differential geometry but are not differentiable manifolds. For instance, differentiable stacks have applications in foliation theory, [2] Poisson geometry [3] and twisted K-theory. [4]
Recall that a category fibred in groupoids (also called a groupoid fibration) consists of a category together with a functor to the category of differentiable manifolds such that
These properties ensure that, for every object in , one can define its fibre, denoted by or , as the subcategory of made up by all objects of lying over and all morphisms of lying over . By construction, is a groupoid, thus explaining the name. A stack is a groupoid fibration satisfied further glueing properties, expressed in terms of descent.
Any manifold defines its slice category , whose objects are pairs of a manifold and a smooth map ; then is a groupoid fibration which is actually also a stack. A morphism of groupoid fibrations is called a representable submersion if
A differentiable stack is a stack together with a special kind of representable submersion (every submersion described above is asked to be surjective), for some manifold . The map is called atlas, presentation or cover of the stack . [5] [6]
Recall that a prestack (of groupoids) on a category , also known as a 2-presheaf, is a 2-functor , where is the 2-category of (set-theoretical) groupoids, their morphisms, and the natural transformations between them. A stack is a prestack satisfying further glueing properties (analogously to the glueing properties satisfied by a sheaf). In order to state such properties precisely, one needs to define (pre)stacks on a site, i.e. a category equipped with a Grothendieck topology.
Any object defines a stack , which associated to another object the groupoid of morphisms from to . A stack is called geometric if there is an object and a morphism of stacks (often called atlas, presentation or cover of the stack ) such that
A differentiable stack is a stack on , the category of differentiable manifolds (viewed as a site with the usual open covering topology), i.e. a 2-functor , which is also geometric, i.e. admits an atlas as described above. [7] [8]
Note that, replacing with the category of affine schemes, one recovers the standard notion of algebraic stack. Similarly, replacing with the category of topological spaces, one obtains the definition of topological stack.
Recall that a Lie groupoid consists of two differentiable manifolds and , together with two surjective submersions , as well as a partial multiplication map , a unit map , and an inverse map , satisfying group-like compatibilities.
Two Lie groupoids and are Morita equivalent if there is a principal bi-bundle between them, i.e. a principal right -bundle , a principal left -bundle , such that the two actions on commutes. Morita equivalence is an equivalence relation between Lie groupoids, weaker than isomorphism but strong enough to preserve many geometric properties.
A differentiable stack, denoted as , is the Morita equivalence class of some Lie groupoid . [5] [9]
Any fibred category defines the 2-sheaf . Conversely, any prestack gives rise to a category , whose objects are pairs of a manifold and an object , and whose morphisms are maps such that . Such becomes a fibred category with the functor .
The glueing properties defining a stack in the first and in the second definition are equivalent; similarly, an atlas in the sense of Definition 1 induces an atlas in the sense of Definition 2 and vice versa. [5]
Every Lie groupoid gives rise to the differentiable stack , which sends any manifold to the category of -torsors on (i.e. -principal bundles). Any other Lie groupoid in the Morita class of induces an isomorphic stack.
Conversely, any differentiable stack is of the form , i.e. it can be represented by a Lie groupoid. More precisely, if is an atlas of the stack , then one defines the Lie groupoid and checks that is isomorphic to .
A theorem by Dorette Pronk states an equivalence of bicategories between differentiable stacks according to the first definition and Lie groupoids up to Morita equivalence. [10]
Given a Lie group action on , its quotient (differentiable) stack is the differential counterpart of the quotient (algebraic) stack in algebraic geometry. It is defined as the stack associating to any manifold the category of principal -bundles and -equivariant maps . It is a differentiable stack presented by the stack morphism defined for any manifold as
where is the -equivariant map . [7]
The stack corresponds to the Morita equivalence class of the action groupoid . Accordingly, one recovers the following particular cases:
A differentiable space is a differentiable stack with trivial stabilizers. For example, if a Lie group acts freely but not necessarily properly on a manifold, then the quotient by it is in general not a manifold but a differentiable space.
A differentiable stack may be equipped with Grothendieck topology in a certain way (see the reference). This gives the notion of a sheaf over . For example, the sheaf of differential -forms over is given by, for any in over a manifold , letting be the space of -forms on . The sheaf is called the structure sheaf on and is denoted by . comes with exterior derivative and thus is a complex of sheaves of vector spaces over : one thus has the notion of de Rham cohomology of .
An epimorphism between differentiable stacks is called a gerbe over if is also an epimorphism. For example, if is a stack, is a gerbe. A theorem of Giraud says that corresponds one-to-one to the set of gerbes over that are locally isomorphic to and that come with trivializations of their bands. [11]