In mathematics, a Lie groupoid is a groupoid where the set of objects and the set of morphisms are both manifolds, all the category operations (source and target, composition, identity-assigning map and inversion) are smooth, and the source and target operations
are submersions.
A Lie groupoid can thus be thought of as a "many-object generalization" of a Lie group, just as a groupoid is a many-object generalization of a group. Accordingly, while Lie groups provide a natural model for (classical) continuous symmetries, Lie groupoids are often used as model for (and arise from) generalised, point-dependent symmetries. [1] Extending the correspondence between Lie groups and Lie algebras, Lie groupoids are the global counterparts of Lie algebroids.
Lie groupoids were introduced by Charles Ehresmann [2] [3] under the name differentiable groupoids.
A Lie groupoid consists of
such that
Using the language of category theory, a Lie groupoid can be more compactly defined as a groupoid (i.e. a small category where all the morphisms are invertible) such that the sets of objects and of morphisms are manifolds, the maps , , , and are smooth and and are submersions. A Lie groupoid is therefore not simply a groupoid object in the category of smooth manifolds: one has to ask the additional property that and are submersions.
Lie groupoids are often denoted by , where the two arrows represent the source and the target. The notation is also frequently used, especially when stressing the simplicial structure of the associated nerve.
In order to include more natural examples, the manifold is not required in general to be Hausdorff or second countable (while and all other spaces are).
The original definition by Ehresmann required and to possess a smooth structure such that only is smooth and the maps and are subimmersions (i.e. have locally constant rank). Such definition proved to be too weak and was replaced by Pradines with the one currently used. [4]
While some authors [5] introduced weaker definitions which did not require and to be submersions, these properties are fundamental to develop the entire Lie theory of groupoids and algebroids.
The fact that the source and the target map of a Lie groupoid are smooth submersions has some immediate consequences:
A Lie subgroupoid of a Lie groupoid is a subgroupoid (i.e. a subcategory of the category ) with the extra requirement that is an immersed submanifold. As for a subcategory, a (Lie) subgroupoid is called wide if . Any Lie groupoid has two canonical wide subgroupoids:
A normal Lie subgroupoid is a wide Lie subgroupoid inside such that, for every with , one has . The isotropy groups of are therefore normal subgroups of the isotropy groups of .
A Lie groupoid morphism between two Lie groupoids and is a groupoid morphism (i.e. a functor between the categories and ), where both and are smooth. The kernel of a morphism between Lie groupoids over the same base manifold is automatically a normal Lie subgroupoid.
The quotient has a natural groupoid structure such that the projection is a groupoid morphism; however, unlike quotients of Lie groups, may fail to be a Lie groupoid in general. Accordingly, the isomorphism theorems for groupoids cannot be specialised to the entire category of Lie groupoids, but only to special classes. [6]
A Lie groupoid is called abelian if its isotropy Lie groups are abelian. For similar reasons as above, while the definition of abelianisation of a group extends to set-theoretical groupoids, in the Lie case the analogue of the quotient may not exist or be smooth. [7]
A bisection of a Lie groupoid is a smooth map such that and is a diffeomorphism of . In order to overcome the lack of symmetry between the source and the target, a bisection can be equivalently defined as a submanifold such that and are diffeomorphisms; the relation between the two definitions is given by . [8]
The set of bisections forms a group, with the multiplication defined as
and inversion defined as
Note that the definition is given in such a way that, if and , then and .
The group of bisections can be given the compact-open topology, as well as an (infinite-dimensional) structure of Fréchet manifold compatible with the group structure, making it into a Fréchet-Lie group.
A local bisection is defined analogously, but the multiplication between local bisections is of course only partially defined.
Note that some of the following classes make sense already in the category of set-theoretical or topological groupoids.
A Lie groupoid is transitive (in older literature also called connected) if it satisfies one of the following equivalent conditions:
Gauge groupoids constitute the prototypical examples of transitive Lie groupoids: indeed, any transitive Lie groupoid is isomorphic to the gauge groupoid of some principal bundle, namely the -bundle , for any point . For instance:
As a less trivial instance of the correspondence between transitive Lie groupoids and principal bundles, consider the fundamental groupoid of a (connected) smooth manifold . This is naturally a topological groupoid, which is moreover transitive; one can see that is isomorphic to the gauge groupoid of the universal cover of . Accordingly, inherits a smooth structure which makes it into a Lie groupoid.
Submersions groupoids are an example of non-transitive Lie groupoids, whose orbits are precisely the fibres of .
A stronger notion of transitivity requires the anchor to be a surjective submersion. Such condition is also called local triviality, because becomes locally isomorphic (as Lie groupoid) to a trivial groupoid over any open (as a consequence of the local triviality of principal bundles). [6]
When the space is second countable, transitivity implies local triviality. Accordingly, these two conditions are equivalent for many examples but not for all of them: for instance, if is a transitive pseudogroup, its germ groupoid is transitive but not locally trivial.
A Lie groupoid is called proper if is a proper map. As a consequence
For instance:
As seen above, properness for Lie groupoids is the "right" analogue of compactness for Lie groups. One could also consider more "natural" conditions, e.g. asking that the source map is proper (then is called s-proper), or that the entire space is compact (then is called compact), but these requirements turns out to be too strict for many examples and applications. [10]
A Lie groupoid is called étale if it satisfies one of the following equivalent conditions:
As a consequence, also the -fibres, the isotropy groups and the orbits become discrete.
For instance:
An étale groupoid is called effective if, for any two local bisections , the condition implies . For instance:
In general, any effective étale groupoid arise as the germ groupoid of some pseudogroup. [11] However, a (more involved) definition of effectiveness, which does not assume the étale property, can also be given.
A Lie groupoid is called -connected if all its -fibres are connected. Similarly, one talks about -simply connected groupoids (when the -fibres are simply connected) or source-k-connected groupoids (when the -fibres are k-connected, i.e. the first homotopy groups are trivial).
Note that the entire space of arrows is not asked to satisfy any connectedness hypothesis. However, if is a source--connected Lie groupoid over a -connected manifold, then itself is automatically -connected.
For instanceː
Recall that an action of a groupoid on a set along a function is defined via a collection of maps for each morphism between . Accordingly, an action of a Lie groupoid on a manifold along a smooth map consists of a groupoid action where the maps are smooth. Of course, for every there is an induced smooth action of the isotropy group on the fibre .
Given a Lie groupoid , a principal -bundle consists of a -space and a -invariant surjective submersion such that
is a diffeomorphism. Equivalent (but more involved) definitions can be given using -valued cocycles or local trivialisations.
When is a Lie groupoid over a point, one recovers, respectively, standard Lie group actions and principal bundles.
A representation of a Lie groupoid consists of a Lie groupoid action on a vector bundle , such that the action is fibrewise linear, i.e. each bijection is a linear isomorphism. Equivalently, a representation of on can be described as a Lie groupoid morphism from to the general linear groupoid .
Of course, any fibre becomes a representation of the isotropy group . More generally, representations of transitive Lie groupoids are uniquely determined by representations of their isotropy groups, via the construction of the associated vector bundle.
Examples of Lie groupoids representations include the following:
The set of isomorphism classes of representations of a Lie groupoid has a natural structure of semiring, with direct sums and tensor products of vector bundles.
The notion of differentiable cohomology for Lie groups generalises naturally also to Lie groupoids: the definition relies on the simplicial structure of the nerve of , viewed as a category.
More precisely, recall that the space consists of strings of composable morphisms, i.e.
and consider the map .
A differentiable -cochain of with coefficients in some representation is a smooth section of the pullback vector bundle . One denotes by the space of such -cochains, and considers the differential , defined as
Then becomes a cochain complex and its cohomology, denoted by , is called the differentiable cohomology of with coefficients in . Note that, since the differential at degree zero is , one has always .
Of course, the differentiable cohomology of as a Lie groupoid coincides with the standard differentiable cohomology of as a Lie group (in particular, for discrete groups one recovers the usual group cohomology). On the other hand, for any proper Lie groupoid , one can prove that for every . [12]
Any Lie groupoid has an associated Lie algebroid , obtained with a construction similar to the one which associates a Lie algebra to any Lie groupː
The Lie group–Lie algebra correspondence generalises to some extends also to Lie groupoids: the first two Lie's theorem (also known as the subgroups–subalgebras theorem and the homomorphisms theorem) can indeed be easily adapted to this setting.
In particular, as in standard Lie theory, for any s-connected Lie groupoid there is a unique (up to isomorphism) s-simply connected Lie groupoid with the same Lie algebroid of , and a local diffeomorphism which is a groupoid morphism. For instance,
However, there is no analogue of Lie's third theoremː while several classes of Lie algebroids are integrable, there are examples of Lie algebroids, for instance related to foliation theory, which do not admit an integrating Lie groupoid. [13] The general obstructions to the existence of such integration depend on the topology of . [14]
As discussed above, the standard notion of (iso)morphism of groupoids (viewed as functors between categories) restricts naturally to Lie groupoids. However, there is a more coarse notion of equivalence, called Morita equivalence, which is more flexible and useful in applications.
First, a Morita map (also known as a weak equivalence or essential equivalence) between two Lie groupoids and consists of a Lie groupoid morphism from G to H which is moreover fully faithful and essentially surjective (adapting these categorical notions to the smooth context). We say that two Lie groupoids and are Morita equivalent if and only if there exists a third Lie groupoid together with two Morita maps from G to K and from H to K.
A more explicit description of Morita equivalence (e.g. useful to check that it is an equivalence relation) requires the existence of two surjective submersions and together with a left -action and a right -action, commuting with each other and making into a principal bi-bundle. [15]
Many properties of Lie groupoids, e.g. being proper, being Hausdorff or being transitive, are Morita invariant. On the other hand, being étale is not Morita invariant.
In addition, a Morita equivalence between and preserves their transverse geometry, i.e. it induces:
Last, the differentiable cohomologies of two Morita equivalent Lie groupoids are isomorphic. [12]
A concrete instance of the last example goes as follows. Let M be a smooth manifold and an open cover of . Its Čech groupoid is defined by the disjoint unions and , where . The source and target map are defined as the embeddings and , and the multiplication is the obvious one if we read the as subsets of M (compatible points in and actually are the same in and also lie in ). The Čech groupoid is in fact the pullback groupoid, under the obvious submersion , of the unit groupoid . As such, Čech groupoids associated to different open covers of are Morita equivalent.
Investigating the structure of the orbit space of a Lie groupoid leads to the notion of a smooth stack. For instance, the orbit space is a smooth manifold if the isotropy groups are trivial (as in the example of the Čech groupoid), but it is not smooth in general. The solution is to revert the problem and to define a smooth stack as a Morita-equivalence class of Lie groupoids. The natural geometric objects living on the stack are the geometric objects on Lie groupoids invariant under Morita-equivalence: an example is the Lie groupoid cohomology.
Since the notion of smooth stack is quite general, obviously all smooth manifolds are smooth stacks. Other classes of examples include orbifolds, which are (equivalence classes of) proper étale Lie groupoids, and orbit spaces of foliations.
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.
In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:
In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space is known as the total space of the fiber bundle, as the base space, and the fiber.
In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with
In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = n − p is called its codimension.
This is a glossary of terms specific to differential geometry and differential topology. The following three glossaries are closely related:
In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin.
In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.
Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.
In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems.
In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :
In mathematics, R-algebroids are constructed starting from groupoids. These are more abstract concepts than the Lie algebroids that play a similar role in the theory of Lie groupoids to that of Lie algebras in the theory of Lie groups..
In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.
In mathematics, the Atiyah algebroid, or Atiyah sequence, of a principal -bundle over a manifold , where is a Lie group, is the Lie algebroid of the gauge groupoid of . Explicitly, it is given by the following short exact sequence of vector bundles over :
A differentiable stack is the analogue in differential geometry of an algebraic stack in algebraic geometry. It can be described either as a stack over differentiable manifolds which admits an atlas, or as a Lie groupoid up to Morita equivalence.
In category theory, a branch of mathematics, a groupoid object is both a generalization of a groupoid which is built on richer structures than sets, and a generalization of a group objects when the multiplication is only partially defined.
A Lie bialgebroid is a mathematical structure in the area of non-Riemannian differential geometry. In brief a Lie bialgebroid are two compatible Lie algebroids defined on dual vector bundles. They form the vector bundle version of a Lie bialgebra.