Category of manifolds

Last updated

In mathematics, the category of manifolds, often denoted Manp, is the category whose objects are manifolds of smoothness class Cp and whose morphisms are p-times continuously differentiable maps. This forms a category because the composition of two Cp maps is again continuous and of class Cp.

Contents

One is often interested only in Cp-manifolds modeled on spaces in a fixed category A, and the category of such manifolds is denoted Manp(A). Similarly, the category of Cp-manifolds modeled on a fixed space E is denoted Manp(E).

One may also speak of the category of smooth manifolds, Man, or the category of analytic manifolds, Manω.

Manp is a concrete category

Like many categories, the category Manp is a concrete category, meaning its objects are sets with additional structure (i.e. a topology and an equivalence class of atlases of charts defining a Cp-differentiable structure) and its morphisms are functions preserving this structure. There is a natural forgetful functor

U : ManpTop

to the category of topological spaces which assigns to each manifold the underlying topological space and to each p-times continuously differentiable function the underlying continuous function of topological spaces. Similarly, there is a natural forgetful functor

U : ManpSet

to the category of sets which assigns to each manifold the underlying set and to each p-times continuously differentiable function the underlying function. Finally, for all 0 < p < q < ∞ there are natural inclusion functors

ManωManManqManpMan0

In other words, one can always see the category of smoother manifolds as a subcategory of less smooth manifolds all the way down to Man0, the category of topological manifolds with continuous maps between them.

Obviously these inclusions are not full (continuous maps may not be q-differentiable, q-differentiable maps may not be p-differentiable, p-differentiable maps may not be smooth and smooth maps may not be analytic) nor replete (similarly as said with maps, homeomorphisms are not in general diffeomorphisms and so on) nor wide (not all topological manifolds are differentiable and so on), so they can be viewed as "strict" subcategories.

Pointed manifolds and the tangent space functor

It is often convenient or necessary to work with the category of manifolds along with a distinguished point: Manp analogous to Top - the category of pointed spaces. The objects of Manp are pairs where is a manifold along with a basepoint and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. such that [1] The category of pointed manifolds is an example of a comma category - Manp is exactly where represents an arbitrary singleton set, and the represents a map from that singleton to an element of Manp, picking out a basepoint.

The tangent space construction can be viewed as a functor from Manp to VectR as follows: given pointed manifolds and with a map between them, we can assign the vector spaces and with a linear map between them given by the pushforward (differential): This construction is a genuine functor because the pushforward of the identity map is the vector space isomorphism [1] and the chain rule ensures that [1]

Related Research Articles

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, an embedding is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

<span class="mw-page-title-main">Vector bundle</span> Mathematical parametrization of vector spaces by another space

In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory that computes topological invariants.

In mathematics, particularly algebraic topology, cohomotopy sets are particular contravariant functors from the category of pointed topological spaces and basepoint-preserving continuous maps to the category of sets and functions. They are dual to the homotopy groups, but less studied.

In mathematics, a comma category is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a category to one another, morphisms become objects in their own right. This notion was introduced in 1963 by F. W. Lawvere, although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some limits and colimits. The name comes from the notation originally used by Lawvere, which involved the comma punctuation mark. The name persists even though standard notation has changed, since the use of a comma as an operator is potentially confusing, and even Lawvere dislikes the uninformative term "comma category".

In mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as that remains unchanged during subsequent discussion, and is kept track of during all operations.

In mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f*E over B. The fiber of f*E over a point b in B is just the fiber of E over f(b′). Thus f*E is the disjoint union of all these fibers equipped with a suitable topology.

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In mathematics, a Banach bundle is a vector bundle each of whose fibres is a Banach space, i.e. a complete normed vector space, possibly of infinite dimension.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form.

In differential topology, a branch of mathematics, a smooth functor is a type of functor defined on finite-dimensional real vector spaces. Intuitively, a smooth functor is smooth in the sense that it sends smoothly parameterized families of vector spaces to smoothly parameterized families of vector spaces. Smooth functors may therefore be uniquely extended to functors defined on vector bundles.

In algebraic topology, a branch of mathematics, the calculus of functors or Goodwillie calculus is a technique for studying functors by approximating them by a sequence of simpler functors; it generalizes the sheafification of a presheaf. This sequence of approximations is formally similar to the Taylor series of a smooth function, hence the term "calculus of functors".

References

  1. 1 2 3 Tu 2011 , pp.  89 , 111, 112