Geometric quantization

Last updated

In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in.

Contents

Origins

One of the earliest attempts at a natural quantization was Weyl quantization, proposed by Hermann Weyl in 1927. Here, an attempt is made to associate a quantum-mechanical observable (a self-adjoint operator on a Hilbert space) with a real-valued function on classical phase space. The position and momentum in this phase space are mapped to the generators of the Heisenberg group, and the Hilbert space appears as a group representation of the Heisenberg group. In 1946, H. J. Groenewold considered the product of a pair of such observables and asked what the corresponding function would be on the classical phase space. [1] This led him to discover the phase-space star-product of a pair of functions.

The modern theory of geometric quantization was developed by Bertram Kostant and Jean-Marie Souriau in the 1970s. One of the motivations of the theory was to understand and generalize Kirillov's orbit method in representation theory.

Deformation quantization

More generally, this technique leads to deformation quantization, where the ★-product is taken to be a deformation of the algebra of functions on a symplectic manifold or Poisson manifold. However, as a natural quantization scheme (a functor), Weyl's map is not satisfactory. For example, the Weyl map of the classical angular-momentum-squared is not just the quantum angular momentum squared operator, but it further contains a constant term 3ħ2/2. (This extra term is actually physically significant, since it accounts for the nonvanishing angular momentum of the ground-state Bohr orbit in the hydrogen atom. [2] ) As a mere representation change, however, Weyl's map underlies the alternate phase-space formulation of conventional quantum mechanics.

Geometric quantization

The geometric quantization procedure falls into the following three steps: prequantization, polarization, and metaplectic correction. Prequantization produces a natural Hilbert space together with a quantization procedure for observables that exactly transforms Poisson brackets on the classical side into commutators on the quantum side. Nevertheless, the prequantum Hilbert space is generally understood to be "too big". [3] The idea is that one should then select a Poisson-commuting set of n variables on the 2n-dimensional phase space and consider functions (or, more properly, sections) that depend only on these n variables. The n variables can be either real-valued, resulting in a position-style Hilbert space, or complex analytic, producing something like the Segal–Bargmann space. [lower-alpha 1] A polarization is a coordinate-independent description of such a choice of n Poisson-commuting functions. The metaplectic correction (also known as the half-form correction) is a technical modification of the above procedure that is necessary in the case of real polarizations and often convenient for complex polarizations.

Prequantization

Suppose is a symplectic manifold with symplectic form . Suppose at first that is exact, meaning that there is a globally defined symplectic potential with . We can consider the "prequantum Hilbert space" of square-integrable functions on (with respect to the Liouville volume measure). For each smooth function on , we can define the Kostant–Souriau prequantum operator

.

where is the Hamiltonian vector field associated to .

More generally, suppose has the property that the integral of over any closed surface is an integer. Then we can construct a line bundle with connection whose curvature 2-form is . In that case, the prequantum Hilbert space is the space of square-integrable sections of , and we replace the formula for above with

,

with the connection. The prequantum operators satisfy

for all smooth functions and . [4]

The construction of the preceding Hilbert space and the operators is known as prequantization.

Polarization

The next step in the process of geometric quantization is the choice of a polarization. A polarization is a choice at each point in a Lagrangian subspace of the complexified tangent space of . The subspaces should form an integrable distribution, meaning that the commutator of two vector fields lying in the subspace at each point should also lie in the subspace at each point. The quantum (as opposed to prequantum) Hilbert space is the space of sections of that are covariantly constant in the direction of the polarization. [5] [lower-alpha 2] The idea is that in the quantum Hilbert space, the sections should be functions of only variables on the -dimensional classical phase space.

If is a function for which the associated Hamiltonian flow preserves the polarization, then will preserve the quantum Hilbert space. [6] The assumption that the flow of preserve the polarization is a strong one. Typically not very many functions will satisfy this assumption.

Half-form correction

The half-form correction—also known as the metaplectic correction—is a technical modification to the above procedure that is necessary in the case of real polarizations to obtain a nonzero quantum Hilbert space; it is also often useful in the complex case. The line bundle is replaced by the tensor product of with the square root of the canonical bundle of . In the case of the vertical polarization, for example, instead of considering functions of that are independent of , one considers objects of the form . The formula for must then be supplemented by an additional Lie derivative term. [7] In the case of a complex polarization on the plane, for example, the half-form correction allows the quantization of the harmonic oscillator to reproduce the standard quantum mechanical formula for the energies, , with the "" coming courtesy of the half-forms. [8]

Poisson manifolds

Geometric quantization of Poisson manifolds and symplectic foliations also is developed. For instance, this is the case of partially integrable and superintegrable Hamiltonian systems and non-autonomous mechanics.

Example

In the case that the symplectic manifold is the 2-sphere, it can be realized as a coadjoint orbit in . Assuming that the area of the sphere is an integer multiple of , we can perform geometric quantization and the resulting Hilbert space carries an irreducible representation of SU(2). In the case that the area of the sphere is , we obtain the two-dimensional spin-½ representation.

See also

Notes

  1. See Hall 2013, Section 22.4 for simple examples.
  2. See Section 22.4 of Hall 2013 for examples in the Euclidean case.

Citations

  1. Groenewold 1946, pp. 405–460.
  2. Dahl & Schleich 2002.
  3. Hall 2013, Section 22.3.
  4. Hall 2013, Theorem 23.14.
  5. Hall 2013, Section 23.4.
  6. Hall 2013, Theorem 23.24.
  7. Hall 2013, Sections 23.6 and 23.7.
  8. Hall 2013, Example 23.53.

Sources

Related Research Articles

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

In physics, quantization is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta". This procedure is basic to theories of atomic physics, chemistry, particle physics, nuclear physics, condensed matter physics, and quantum optics.

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.

In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible.

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. The theory is now understood as the semi-classical approximation to modern quantum mechanics. The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli Exclusion Principle which were both premised on the Arnold Sommerfeld enhancements to the Bohr model of the atom.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

In mathematics, the Moyal product is an example of a phase-space star product. It is an associative, non-commutative product, ★, on the functions on ℝ2n, equipped with its Poisson bracket. It is a special case of the ★-product of the "algebra of symbols" of a universal enveloping algebra.

<span class="mw-page-title-main">Canonical quantum gravity</span> A formulation of general relativity

In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.

In quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture.

Quantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories. The knowledge of quantum characteristics is equivalent to the knowledge of quantum dynamics.

In differential geometry, a metaplectic structure is the symplectic analog of spin structure on orientable Riemannian manifolds. A metaplectic structure on a symplectic manifold allows one to define the symplectic spinor bundle, which is the Hilbert space bundle associated to the metaplectic structure via the metaplectic representation, giving rise to the notion of a symplectic spinor field in differential geometry.

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

In dynamical systems theory, the Liouville–Arnold theorem states that if, in a Hamiltonian dynamical system with n degrees of freedom, there are also n independent, Poisson commuting first integrals of motion, and the energy level set is compact, then there exists a canonical transformation to action-angle coordinates in which the transformed Hamiltonian is dependent only upon the action coordinates and the angle coordinates evolve linearly in time. Thus the equations of motion for the system can be solved in quadratures if the level simultaneous set conditions can be separated. The theorem is named after Joseph Liouville and Vladimir Arnold.