Calculus on Manifolds (book)

Last updated
Calculus on Manifolds
Calculus on Manifolds (book).jpg
First edition
Author Michael Spivak
Country United States
Language English
Subject Mathematics
Publisher Benjamin Cummings
Publication date
1965
Pages146
ISBN 0-8053-9021-9
OCLC 607457141

Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus (1965) by Michael Spivak is a brief, rigorous, and modern textbook of multivariable calculus, differential forms, and integration on manifolds for advanced undergraduates.

Contents

Description

Calculus on Manifolds is a brief monograph on the theory of vector-valued functions of several real variables (f : Rn→Rm) and differentiable manifolds in Euclidean space. In addition to extending the concepts of differentiation (including the inverse and implicit function theorems) and Riemann integration (including Fubini's theorem) to functions of several variables, the book treats the classical theorems of vector calculus, including those of Cauchy–Green, Ostrogradsky–Gauss (divergence theorem), and Kelvin–Stokes, in the language of differential forms on differentiable manifolds embedded in Euclidean space, and as corollaries of the generalized Stokes theorem on manifolds-with-boundary. The book culminates with the statement and proof of this vast and abstract modern generalization of several classical results: [lower-alpha 1]

Stokes' Theorem for Manifolds-With-Boundary.  Ifis a compact oriented-dimensional manifold-with-boundary,is the boundary given the induced orientation, andis a ()-form on, then.

The cover of Calculus on Manifolds features snippets of a July 2, 1850 letter from Lord Kelvin to Sir George Stokes containing the first disclosure of the classical Stokes' theorem (i.e., the Kelvin–Stokes theorem). [1]

Reception

Calculus on Manifolds aims to present the topics of multivariable and vector calculus in the manner in which they are seen by a modern working mathematician, yet simply and selectively enough to be understood by undergraduate students whose previous coursework in mathematics comprises only one-variable calculus and introductory linear algebra. While Spivak's elementary treatment of modern mathematical tools is broadly successful—and this approach has made Calculus on Manifolds a standard introduction to the rigorous theory of multivariable calculus—the text is also well known for its laconic style, lack of motivating examples, and frequent omission of non-obvious steps and arguments. [2] [3] For example, in order to state and prove the generalized Stokes' theorem on chains, a profusion of unfamiliar concepts and constructions (e.g., tensor products, differential forms, tangent spaces, pullbacks, exterior derivatives, cube and chains) are introduced in quick succession within the span of 25 pages. Moreover, careful readers have noted a number of nontrivial oversights throughout the text, including missing hypotheses in theorems, inaccurately stated theorems, and proofs that fail to handle all cases. [4] [5] [6]

Other textbooks

A more recent textbook which also covers these topics at an undergraduate level is the text Analysis on Manifolds by James Munkres (366 pp.). [7] At more than twice the length of Calculus on Manifolds, Munkres's work presents a more careful and detailed treatment of the subject matter at a leisurely pace. Nevertheless, Munkres acknowledges the influence of Spivak's earlier text in the preface of Analysis on Manifolds. [8]

Spivak's five-volume textbook A Comprehensive Introduction to Differential Geometry states in its preface that Calculus on Manifolds serves as a prerequisite for a course based on this text. In fact, several of the concepts introduced in Calculus on Manifolds reappear in the first volume of this classic work in more sophisticated settings. [9]

See also

Footnotes

Notes

  1. The formalisms of differential forms and the exterior calculus used in Calculus on Manifolds were first formulated by Élie Cartan. Using this language, Cartan stated the generalized Stokes' theorem in its modern form, publishing the simple, elegant formula shown here in 1945. For a detailed discussion of how Stokes' theorem developed historically. See Katz (1979, pp. 146–156).

Citations

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the Fundamental Theorem of Multivariate Calculus.

In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold.

Vector calculus, or vector analysis, is a type of advanced mathematics that has practical applications in physics and engineering. It is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

<span class="mw-page-title-main">Mathematical analysis</span> Branch of mathematics

Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Michael Spivak</span> American mathematician (1940–2020)

Michael David Spivak was an American mathematician specializing in differential geometry, an expositor of mathematics, and the founder of Publish-or-Perish Press. Spivak was the author of the five-volume A Comprehensive Introduction to Differential Geometry.

<span class="mw-page-title-main">Frobenius theorem (differential topology)</span> On finding a maximal set of solutions of a system of first-order homogeneous linear PDEs

In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of r vector fields mesh into coordinate grids on r-dimensional integral manifolds. The theorem is foundational in differential topology and calculus on manifolds.

Multivariable calculus is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.

The Darboux derivative of a map between a manifold and a Lie group is a variant of the standard derivative. It is arguably a more natural generalization of the single-variable derivative. It allows a generalization of the single-variable fundamental theorem of calculus to higher dimensions, in a different vein than the generalization that is Stokes' theorem.

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

Math 55 is a two-semester long freshman undergraduate mathematics course at Harvard University founded by Lynn Loomis and Shlomo Sternberg. The official titles of the course are Studies in Algebra and Group Theory and Studies in Real and Complex Analysis. Previously, the official title was Honors Advanced Calculus and Linear Algebra.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References