In mathematics, a real differential one-form ω on a surface is called a harmonic differential if ω and its conjugate one-form, written as ω∗, are both closed.
In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, volumes, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.
In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero, and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.
Consider the case of real one-forms defined on a two dimensional real manifold. Moreover, consider real one-forms that are the real parts of complex differentials. Let ω = A dx + B dy, and formally define the conjugate one-form to be ω∗ = A dy−B dx.
A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i is a solution of the equation x2 = −1. Because no real number satisfies this equation, i is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part. Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers, and are fundamental in many aspects of the scientific description of the natural world.
There is a clear connection with complex analysis. Let us write a complex number z in terms of its real and imaginary parts, say x and y respectively, i.e. z = x + iy. Since ω + iω∗ = (A−iB)(dx + i dy), from the point of view of complex analysis, the quotient (ω + iω∗)/dz tends to a limit as dz tends to 0. In other words, the definition of ω∗ was chosen for its connection with the concept of a derivative (analyticity). Another connection with the complex unit is that (ω∗)∗ = −ω (just as i2 = −1).
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.
In arithmetic, a quotient is the quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as a fraction or a ratio. For example, when dividing twenty by three, the quotient is six and two thirds. In this sense, a quotient is the ratio of a dividend to its divisor.
In mathematics, a limit is the value that a function "approaches" as the input "approaches" some value. Limits are essential to calculus and are used to define continuity, derivatives, and integrals.
For a given function f, let us write ω = df, i.e. ω = ∂f/∂x dx + ∂f/∂y dy, where ∂ denotes the partial derivative. Then (df)∗ = ∂f/∂x dy−∂f/∂y dx. Now d((df)∗) is not always zero, indeed d((df)∗) = Δf dx dy, where Δf = ∂2f/∂x2 + ∂2f/∂y2.
In mathematics, a function was originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable. The concept of function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept.
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant. Partial derivatives are used in vector calculus and differential geometry.
As we have seen above: we call the one-form ωharmonic if both ω and ω∗ are closed. This means that ∂A/∂y = ∂B/∂x (ω is closed) and ∂B/∂y = −∂A/∂x (ω∗ is closed). These are called the Cauchy–Riemann equations on A−iB. Usually they are expressed in terms of u(x, y) + iv(x, y) as ∂u/∂x = ∂v/∂y and ∂v/∂x = −∂u/∂y.
In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differentiability criteria, form a necessary and sufficient condition for a complex function to be complex differentiable, that is, holomorphic. This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy (1814) then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851.
In mathematics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace who first studied its properties. This is often written as
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is, at every point of its domain, complex differentiable in a neighbourhood of the point. The existence of a complex derivative in a neighbourhood is a very strong condition, for it implies that any holomorphic function is actually infinitely differentiable and equal, locally, to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f : U → R where U is an open subset of Rn that satisfies Laplace's equation, i.e.
In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if two different paths connect the same two points, and a function is holomorphic everywhere in between the two paths, then the two path integrals of the function will be the same.
In mathematics, the Hodge star operator or Hodge star is a linear map introduced by W. V. D. Hodge. It is defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. The result when applied to an element of the algebra is called the element's Hodge dual.
The theory of functions of several complex variables is the branch of mathematics dealing with complex valued functions
In mathematics, a real-valued function defined on a connected open set is said to have a conjugate (function) if and only if they are respectively the real and imaginary parts of a holomorphic function of the complex variable That is, is conjugate to if is holomorphic on As a first consequence of the definition, they are both harmonic real-valued functions on . Moreover, the conjugate of if it exists, is unique up to an additive constant. Also, is conjugate to if and only if is conjugate to .
In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.
In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces.
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory.
In mathematics, a quadratic differential on a Riemann surface is a section of the symmetric square of the holomorphic cotangent bundle. If the section is holomorphic, then the quadratic differential is said to be holomorphic. The vector space of holomorphic quadratic differentials on a Riemann surface has a natural interpretation as the cotangent space to the Riemann moduli space, or Teichmüller space.
In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different.
In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form
In the mathematical field of complex analysis, the Looman–Menchoff theorem states that a continuous complex-valued function defined in an open set of the complex plane is holomorphic if and only if it satisfies the Cauchy–Riemann equations. It is thus a generalization of a theorem by Édouard Goursat, which instead of assuming the continuity of f, assumes its Fréchet differentiability when regarded as a function from a subset of R2 to R2.
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral as well, although that is typically reserved for line integrals in the complex plane.
In calculus, the differential represents the principal part of the change in a function y = f(x) with respect to changes in the independent variable. The differential dy is defined by
In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation
In mathematics, differential forms on a Riemann surface are an important special case of the general theory of differential forms on smooth manifolds, distinguished by the fact that the conformal structure on the Riemann surface intrinsically defines a Hodge star operator on 1-forms without specifying a Riemannian metric. This allows the use of Hilbert space techniques for studying function theory on the Riemann surface and in particular for the construction of harmonic and holomorphic differentials with prescribed singularities. These methods were first used by Hilbert (1909) in his variational approach to the Dirichlet principle, making rigorous the arguments proposed by Riemann. Later Weyl (1940) found a direct approach using his method of orthogonal projection, a precursor of the modern theory of elliptic differential operators and Sobolev spaces. These techniques were originally applied to prove the uniformization theorem and its generalization to planar Riemann surfaces. Later they supplied the analytic foundations for the harmonic integrals of Hodge (1940). This article covers general results on differential forms on a Riemann surface that do not rely on any choice of Riemannian structure.