Tree-graded space

Last updated

A geodesic metric space is called a tree-graded space with respect to a collection of connected proper subsets called pieces, if any two distinct pieces intersect in at most one point, and every non-trivial simple geodesic triangle of is contained in one of the pieces.

Tree-graded spaces behave like real trees "up to what can happen within the pieces", while allowing non-tree-like behavior within the pieces. For example, any topologically embedded circle is contained in a piece; there is a well-defined projection on every piece, such that every path-connected subset meeting a piece in at most one point projects to a unique point on that piece; the space is naturally fibered into real trees that are transverse to pieces; and pieces can be "merged along embedded paths" in a way that preserves a tree-graded structure.

Tree-graded spaces were introduced by CorneliaDruţu and Mark Sapir  ( 2005 ) in their study of the asymptotic cones of relatively hyperbolic groups. This point of view allows for a notion of relative hyperbolicity that makes sense for geodesic metric spaces and which is invariant under quasi-isometries.

For instance, a CAT(0) group has isolated flats, if and only if all its asymptotic cones are tree-graded metric spaces all of whose pieces are isometric to euclidean spaces. [1]

Related Research Articles

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology.

<span class="mw-page-title-main">Riemannian manifold</span> Smooth manifold with an inner product on each tangent space

In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.

In mathematics, real trees are a class of metric spaces generalising simplicial trees. They arise naturally in many mathematical contexts, in particular geometric group theory and probability theory. They are also the simplest examples of Gromov hyperbolic spaces.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

In mathematics, the Teichmüller space of a (real) topological surface is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.

<span class="mw-page-title-main">Quasi-isometry</span> Function between two metric spaces that only respects their large-scale geometry

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

In mathematics, an ultralimit is a geometric construction that assigns a limit metric space to a sequence of metric spaces . The concept captures the limiting behavior of finite configurations in the spaces employing an ultrafilter to bypass the need for repeated consideration of subsequences to ensure convergence. Ultralimits generalize Gromov–Hausdorff convergence in metric spaces.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

In mathematics, relatively hyperbolic groups form an important class of groups of interest for geometric group theory. The main purpose in their study is to extend the theory of Gromov-hyperbolic groups to groups that may be regarded as hyperbolic assemblies of subgroups , called peripheral subgroups, in a way that enables "hyperbolic reduction" of problems for to problems for the s.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

<span class="mw-page-title-main">Cornelia Druțu</span> Romanian mathematician

Cornelia Druțu is a Romanian mathematician notable for her contributions in the area of geometric group theory. She is Professor of mathematics at the University of Oxford and Fellow of Exeter College, Oxford.

In mathematics, the Thurston boundary of Teichmüller space of a surface is obtained as the boundary of its closure in the projective space of functionals on simple closed curves on the surface. The Thurston boundary can be interpreted as the space of projective measured foliations on the surface.

In geometric group theory, the Rips machine is a method of studying the action of groups on R-trees. It was introduced in unpublished work of Eliyahu Rips in about 1991.

<span class="mw-page-title-main">Gromov boundary</span>

In mathematics, the Gromov boundary of a δ-hyperbolic space is an abstract concept generalizing the boundary sphere of hyperbolic space. Conceptually, the Gromov boundary is the set of all points at infinity. For instance, the Gromov boundary of the real line is two points, corresponding to positive and negative infinity.

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture. Asymptotic dimension has important applications in geometric analysis and index theory.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

In the mathematical subject of geometric group theory, an acylindrically hyperbolic group is a group admitting a non-elementary 'acylindrical' isometric action on some geodesic hyperbolic metric space. This notion generalizes the notions of a hyperbolic group and of a relatively hyperbolic group and includes a significantly wider class of examples, such as mapping class groups and Out(Fn).

References

  1. Hruska, G. Christopher; Kleiner, Bruce (2005-08-08). "Hadamard spaces with isolated flats, with an appendix written jointly with Mohamad Hindawi". Geometry & Topology. 9 (3): 1501–1538. doi:10.2140/gt.2005.9.1501. ISSN   1364-0380.