CAT(0) group

Last updated

In mathematics, a CAT(0) group is a finitely generated group with a group action on a CAT(0) space that is geometrically proper, cocompact, and isometric. They form a possible notion of non-positively curved group in geometric group theory.

Contents

Definition

Let be a group. Then is said to be a CAT(0) group if there exists a metric space and an action of on such that:

  1. is a CAT(0) metric space
  2. The action of on is by isometries, i.e. it is a group homomorphism
  3. The action of on is geometrically proper (see below)
  4. The action is cocompact: there exists a compact subset whose translates under together cover , i.e.

An group action on a metric space satisfying conditions 2 - 4 is sometimes called geometric.

This definition is analogous to one of the many possible definitions of a Gromov-hyperbolic group, where the condition that is CAT(0) is replaced with Gromov-hyperbolicity of . However, contrarily to hyperbolicity, CAT(0)-ness of a space is not a quasi-isometry invariant, which makes the theory of CAT(0) groups a lot harder.

CAT(0) space

Metric properness

The suitable notion of properness for actions by isometries on metric spaces differs slightly from that of a properly discontinuous action in topology. [1] An isometric action of a group on a metric space is said to be geometrically proper if, for every , there exists such that is finite.

Since a compact subset of can be covered by finitely many balls such that has the above property, metric properness implies proper discontinuity. However, metric properness is a stronger condition in general. The two notions coincide for proper metric spaces.

If a group acts (geometrically) properly and cocompactly by isometries on a length space , then is actually a proper geodesic space (see metric Hopf-Rinow theorem), and is finitely generated (see Švarc-Milnor lemma). In particular, CAT(0) groups are finitely generated, and the space involved in the definition is actually proper.

Examples

CAT(0) groups

Non-CAT(0) groups

Properties

Properties of the group

Let be a CAT(0) group. Then:

Properties of the action

Let be a group acting properly cocompactly by isometries on a CAT(0) space .

References

  1. Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Group Actions and Quasi-Isometries" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 131–156, doi:10.1007/978-3-662-12494-9_8, ISBN   978-3-662-12494-9 , retrieved 2024-11-19
  2. 1 2 3 Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Mк-Polyhedral Complexes of Bounded Curvature" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 205–227, doi:10.1007/978-3-662-12494-9_13, ISBN   978-3-662-12494-9 , retrieved 2024-11-19
  3. Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Gluing Constructions" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 347–366, doi:10.1007/978-3-662-12494-9_19, ISBN   978-3-662-12494-9 , retrieved 2024-11-19
  4. Niblo, G. A.; Reeves, L. D. (2003-01-27). "Coxeter Groups act on CAT(0) cube complexes". Journal of Group Theory. 6 (3). doi:10.1515/jgth.2003.028. ISSN   1433-5883. S2CID   17040423.
  5. Piggott, Adam; Ruane, Kim; Walsh, Genevieve (2010). "The automorphism group of the free group of rank 2 is a CAT(0) group". Michigan Mathematical Journal. 59 (2): 297–302. arXiv: 0809.2034 . doi:10.1307/mmj/1281531457. ISSN   0026-2285.
  6. Haettel, Thomas; Kielak, Dawid; Schwer, Petra (2016-06-01). "The 6-strand braid group is CAT(0)". Geometriae Dedicata. 182 (1): 263–286. arXiv: 1304.5990 . doi:10.1007/s10711-015-0138-9. ISSN   1572-9168.
  7. Alibegović, Emina; Bestvina, Mladen (2006). "LIMIT GROUPS ARE CAT(0)". Journal of the London Mathematical Society. 74 (1): 259–272. doi:10.1112/S0024610706023155. ISSN   1469-7750.
  8. 1 2 3 Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "The Flat Torus Theorem" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 244–259, doi:10.1007/978-3-662-12494-9_15, ISBN   978-3-662-12494-9 , retrieved 2024-11-19
  9. Gersten, S. M. (1994). "The Automorphism Group of a Free Group Is Not a $\operatorname{Cat}(0)$ Group" . Proceedings of the American Mathematical Society. 121 (4): 999–1002. doi:10.2307/2161207. ISSN   0002-9939. JSTOR   2161207.
  10. Bridson, Martin; Groves, Daniel (2010). "The quadratic isoperimetric inequality for mapping tori of free group automorphisms". Memoirs of the American Mathematical Society. 203 (955). arXiv: math/0610332 . doi:10.1090/S0065-9266-09-00578-X . Retrieved 2024-11-19.
  11. Hatcher, Allen; Vogtmann, Karen (1996-04-01). "Isoperimetric inequalities for automorphism groups of free groups". Pacific Journal of Mathematics. 173 (2): 425–441. doi:10.2140/pjm.1996.173.425. ISSN   0030-8730.
  12. Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Convexity and its Consequences" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 175–183, doi:10.1007/978-3-662-12494-9_10, ISBN   978-3-662-12494-9 , retrieved 2024-11-19
  13. Swenson, Eric L. (1999). "A cut point theorem for $\rm{CAT}(0)$ groups". Journal of Differential Geometry. 53 (2): 327–358. doi:10.4310/jdg/1214425538. ISSN   0022-040X.
  14. 1 2 Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Isometries of CAT(0) Spaces" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 228–243, doi:10.1007/978-3-662-12494-9_14, ISBN   978-3-662-12494-9 , retrieved 2024-11-19
  15. 1 2 Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Non-Positive Curvature and Group Theory" , Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 438–518, doi:10.1007/978-3-662-12494-9_22, ISBN   978-3-662-12494-9 , retrieved 2024-11-19