Automorphism group of a free group

Last updated

In mathematical group theory, the automorphism group of a free group is a discrete group of automorphisms of a free group. The quotient by the inner automorphisms is the outer automorphism group of a free group, which is similar in some ways to the mapping class group of a surface.

Contents

Presentation

JakobNielsen  ( 1924 ) showed that the automorphisms defined by the elementary Nielsen transformations generate the full automorphism group of a finitely generated free group. Nielsen, and later Bernhard Neumann used these ideas to give finite presentations of the automorphism groups of free groups. This is also described in ( Magnus, Karrass & Solitar 2004 , p. 131, Th 3.2).

The automorphism group of the free group with ordered basis [ x1, …, xn ] is generated by the following 4 elementary Nielsen transformations:

These transformations are the analogues of the elementary row operations. Transformations of the first two kinds are analogous to row swaps, and cyclic row permutations. Transformations of the third kind correspond to scaling a row by an invertible scalar. Transformations of the fourth kind correspond to row additions.

Transformations of the first two types suffice to permute the generators in any order, so the third type may be applied to any of the generators, and the fourth type to any pair of generators.

Nielsen gave a rather complicated finite presentation using these generators, described in ( Magnus, Karrass & Solitar 2004 , p. 165, Section 3.5).

See also

Related Research Articles

In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group.

<span class="mw-page-title-main">Free group</span> Mathematics concept

In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

<span class="mw-page-title-main">Geometric group theory</span>

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.

In mathematics, cyclically reduced word is a concept of combinatorial group theory.

In mathematics, a free Lie algebra over a field K is a Lie algebra generated by a set X, without any imposed relations other than the defining relations of alternating K-bilinearity and the Jacobi identity.

In group theory, Tietze transformations are used to transform a given presentation of a group into another, often simpler presentation of the same group. These transformations are named after Heinrich Franz Friedrich Tietze who introduced them in a paper in 1908.

<span class="mw-page-title-main">Elementary abelian group</span> Commutative group in which all nonzero elements have the same order

In mathematics, specifically in group theory, an elementary abelian group is an abelian group in which all elements other than the identity have the same order. This common order must be a prime number, and the elementary abelian groups in which the common order is p are a particular kind of p-group. A group for which p = 2 is sometimes called a Boolean group.

In group theory, a word is any written product of group elements and their inverses. For example, if x, y and z are elements of a group G, then xy, z−1xzz and y−1zxx−1yz−1 are words in the set {xyz}. Two different words may evaluate to the same value in G, or even in every group. Words play an important role in the theory of free groups and presentations, and are central objects of study in combinatorial group theory.

In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free, but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations.

In group theory, a branch of mathematics, the Nielsen–Schreier theorem states that every subgroup of a free group is itself free. It is named after Jakob Nielsen and Otto Schreier.

In the mathematical field of group theory, the Kurosh subgroup theorem describes the algebraic structure of subgroups of free products of groups. The theorem was obtained by Alexander Kurosh, a Russian mathematician, in 1934. Informally, the theorem says that every subgroup of a free product is itself a free product of a free group and of its intersections with the conjugates of the factors of the original free product.

In the mathematical subject of geometric group theory, a train track map is a continuous map f from a finite connected graph to itself which is a homotopy equivalence and which has particularly nice cancellation properties with respect to iterations. This map sends vertices to vertices and edges to nontrivial edge-paths with the property that for every edge e of the graph and for every positive integer n the path fn(e) is immersed, that is fn(e) is locally injective on e. Train-track maps are a key tool in analyzing the dynamics of automorphisms of finitely generated free groups and in the study of the Culler–Vogtmann Outer space.

In mathematics, in the area of abstract algebra known as group theory, a verbal subgroup is a subgroup of a group that is generated by all elements that can be formed by substituting group elements for variables in a given set of words.

In the area of mathematics called combinatorial group theory, the Schreier coset graph is a graph associated with a group G, a generating set {xi : i in I } of G, and a subgroup HG. The Schreier graph encodes the abstract structure of a group modulo an equivalence relation formed by the coset.

Donald Solitar was an American and Canadian mathematician, known for his work in combinatorial group theory. The Baumslag–Solitar groups are named after him and Gilbert Baumslag, after their joint 1962 paper on these groups.

In algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,

In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

References