Dehn function

Last updated

In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the area of a relation in that group (that is a freely reduced word in the generators representing the identity element of the group) in terms of the length of that relation (see pp. 7980 in [1] ). The growth type of the Dehn function is a quasi-isometry invariant of a finitely presented group. The Dehn function of a finitely presented group is also closely connected with non-deterministic algorithmic complexity of the word problem in groups. In particular, a finitely presented group has solvable word problem if and only if the Dehn function for a finite presentation of this group is recursive (see Theorem 2.1 in [1] ). The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the notion of a filling area function that estimates the area of a minimal surface in a Riemannian manifold in terms of the length of the boundary curve of that surface.

Contents

History

The idea of an isoperimetric function for a finitely presented group goes back to the work of Max Dehn in 1910s. Dehn proved that the word problem for the standard presentation of the fundamental group of a closed oriented surface of genus at least two is solvable by what is now called Dehn's algorithm. A direct consequence of this fact is that for this presentation the Dehn function satisfies Dehn(n) ≤ n. This result was extended in 1960s by Martin Greendlinger to finitely presented groups satisfying the C'(1/6) small cancellation condition. [2] The formal notion of an isoperimetric function and a Dehn function as it is used today appeared in late 1980s early 1990s together with the introduction and development of the theory of word-hyperbolic groups. In his 1987 monograph "Hyperbolic groups" [3] Gromov proved that a finitely presented group is word-hyperbolic if and only if it satisfies a linear isoperimetric inequality, that is, if and only if the Dehn function of this group is equivalent to the function f(n) = n. Gromov's proof was in large part informed by analogy with filling area functions for compact Riemannian manifolds where the area of a minimal surface bounding a null-homotopic closed curve is bounded in terms of the length of that curve.

The study of isoperimetric and Dehn functions quickly developed into a separate major theme in geometric group theory, especially since the growth types of these functions are natural quasi-isometry invariants of finitely presented groups. One of the major results in the subject was obtained by Sapir, Birget and Rips who showed [4] that most "reasonable" time complexity functions of Turing machines can be realized, up to natural equivalence, as Dehn functions of finitely presented groups.

Formal definition

Let

be a finite group presentation where the X is a finite alphabet and where R  F(X) is a finite set of cyclically reduced words.

Area of a relation

Let w  F(X) be a relation in G, that is, a freely reduced word such that w = 1 in G. Note that this is equivalent to saying that w belongs to the normal closure of R in F(X), that is, there exists a representation of w as

   (♠)

where m  0 and where ri  R± 1 for i = 1, ..., m.

For w  F(X) satisfying w = 1 in G, the area of w with respect to (∗), denoted Area(w), is the smallest m  0 such that there exists a representation (♠) for w as the product in F(X) of m conjugates of elements of R± 1.

A freely reduced word w  F(X) satisfies w = 1 in G if and only if the loop labeled by w in the presentation complex for G corresponding to (∗) is null-homotopic. This fact can be used to show that Area(w) is the smallest number of 2-cells in a van Kampen diagram over (∗) with boundary cycle labelled by w.

Isoperimetric function

An isoperimetric function for a finite presentation (∗) is a monotone non-decreasing function

such that whenever w  F(X) is a freely reduced word satisfying w = 1 in G, then

Area(w)  f(|w|),

where |w| is the length of the word w.

Dehn function

Then the Dehn function of a finite presentation (∗) is defined as

Equivalently, Dehn(n) is the smallest isoperimetric function for (∗), that is, Dehn(n) is an isoperimetric function for (∗) and for any other isoperimetric function f(n) we have

Dehn(n)  f(n)

for every n  0.

Growth types of functions

Because the exact Dehn function usually depends on the presentation, one usually studies its asymptotic growth type as n tends to infinity, which only depends on the group.

For two monotone-nondecreasing functions

one says that f is dominated by g if there exists C ≥1 such that

for every integer n  0. Say that f  g if f is dominated by g and g is dominated by f. Then ≈ is an equivalence relation and Dehn functions and isoperimetric functions are usually studied up to this equivalence relation. Thus for any a,b > 1 we have an  bn. Similarly, if f(n) is a polynomial of degree d (where d  1 is a real number) with non-negative coefficients, then f(n)  nd. Also, 1  n.

If a finite group presentation admits an isoperimetric function f(n) that is equivalent to a linear (respectively, quadratic, cubic, polynomial, exponential, etc.) function in n, the presentation is said to satisfy a linear (respectively, quadratic, cubic, polynomial, exponential, etc.) isoperimetric inequality.

Basic properties

In particular, this implies that solvability of the word problem is a quasi-isometry invariant for finitely presented groups.

Examples

satisfies Dehn(n)  n and Dehn(n)  n.
has Dehn(n)  2n (see [7] ).
satisfies a cubic but no quadratic isoperimetric inequality. [8]
,
where k  2, satisfy quadratic isoperimetric inequalities. [9]
has a Dehn function growing faster than any fixed iterated tower of exponentials. Specifically, for this group
Dehn(n)  exp(exp(exp(...(exp(1))...)))
where the number of exponentials is equal to the integral part of log2(n) (see [1] [11] ).

Known results

Generalizations

See also

Notes

  1. 1 2 3 4 S. M. Gersten, Isoperimetric and isodiametric functions of finite presentations. Geometric group theory, Vol. 1 (Sussex, 1991), pp. 7996, London Math. Soc. Lecture Note Ser., 181, Cambridge University Press, Cambridge, 1993.
  2. Martin Greendlinger, Dehn's algorithm for the word problem. Communications on Pure and Applied Mathematics, vol. 13 (1960), pp. 6783.
  3. 1 2 3 M. Gromov, Hyperbolic Groups in: "Essays in Group Theory" (G. M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75263. ISBN   0-387-96618-8.MR 0919829
  4. M. Sapir, J.-C. Birget, E. Rips. Isoperimetric and isodiametric functions of groups. Annals of Mathematics (2), vol 156 (2002), no. 2, pp. 345466.
  5. Juan M. Alonso, Inégalités isopérimétriques et quasi-isométries. Comptes Rendus de l'Académie des Sciences, Série I, vol. 311 (1990), no. 12, pp. 761764.
  6. 1 2 Martin R. Bridson. The geometry of the word problem. Invitations to geometry and topology, pp. 2991, Oxford Graduate Texts in Mathematics, 7, Oxford University Press, Oxford, 2002. ISBN   0-19-850772-0.
  7. S. M. Gersten, Dehn functions andl1-norms of finite presentations. Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), pp. 195224, Math. Sci. Res. Inst. Publ., 23, Springer, New York, 1992. ISBN   0-387-97685-X.
  8. 1 2 3 D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA, 1992. ISBN   0-86720-244-0 MR 1161694
  9. D. Allcock, An isoperimetric inequality for the Heisenberg groups. Geometric and Functional Analysis, vol. 8 (1998), no. 2, pp. 219233.
  10. V. S. Guba, The Dehn function of Richard Thompson's group F is quadratic. Inventiones Mathematicae, vol. 163 (2006), no. 2, pp. 313342.
  11. A. N. Platonov, An isoparametric function of the Baumslag-Gersten group. (in Russian.) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, no. 3, pp. 1217; translation in: Moscow University Mathematics Bulletin, vol. 59 (2004), no. 3, pp. 1217 (2005).
  12. A. Yu. Olʹshanskii. Hyperbolicity of groups with subquadratic isoperimetric inequality. International Journal of Algebra and Computation, vol. 1 (1991), no. 3, pp. 281289. MR 1148230 doi : 10.1142/S0218196791000183
  13. B. H. Bowditch. A short proof that a subquadratic isoperimetric inequality implies a linear one. Michigan Mathematical Journal, vol. 42 (1995), no. 1, pp. 103107. MR 1322192 doi : 10.1307/mmj/1029005156
  14. S. M. Gersten, D. F. Holt, T. R. Riley, Isoperimetric inequalities for nilpotent groups. Geometric and Functional Analysis, vol. 13 (2003), no. 4, pp. 795814. MR 2006557 doi : 10.1007/s00039-003-0430-y
  15. N. Brady and M. R. Bridson, There is only one gap in the isoperimetric spectrum. Geometric and Functional Analysis, vol. 10 (2000), no. 5, pp. 10531070.
  16. M. Gromov, Asymptotic invariants of infinite groups, in: "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1295.
  17. P. Papasoglu. On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality. Archived 2011-05-23 at the Wayback Machine Journal of Differential Geometry, vol. 44 (1996), no. 4, pp. 789806.
  18. J. Burillo and J. Taback. Equivalence of geometric and combinatorial Dehn functions. New York Journal of Mathematics, vol. 8 (2002), pp. 169179.
  19. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999. ISBN   3-540-64324-9; Remark 1.7, p. 444.
  20. E. Leuzinger. On polyhedral retracts and compactifications of locally symmetric spaces. Differential Geometry and its Applications, vol. 20 (2004), pp. 293318.
  21. Robert Young, The Dehn function of SL(n;Z). Annals of Mathematics (2), vol. 177 (2013) no.3, pp. 9691027.
  22. 1 2 E. Leuzinger and R. Young, Filling functions of arithmetic groups. Annals of Mathematics, vol. 193 (2021), pp. 733792.
  23. Lee Mosher, Mapping class groups are automatic. Annals of Mathematics (2), vol. 142 (1995), no. 2, pp. 303384.
  24. Allen Hatcher and Karen Vogtmann, Isoperimetric inequalities for automorphism groups of free groups. Pacific Journal of Mathematics, vol. 173 (1996), no. 2, 425441.
  25. Martin R. Bridson and Karen Vogtmann, On the geometry of the automorphism group of a free group. Bulletin of the London Mathematical Society, vol. 27 (1995), no. 6, pp. 544552.
  26. Michael Handel and Lee Mosher, Lipschitz retraction and distortion for subgroups of Out(Fn). Geometry & Topology, vol. 17 (2013), no. 3, pp. 15351579. MR 3073930 doi : 10.2140/gt.2013.17.1535
  27. Martin R. Bridson and Daniel Groves. The quadratic isoperimetric inequality for mapping tori of free-group automorphisms. Memoirs of the American Mathematical Society, vol 203 (2010), no. 955.
  28. J.-C. Birget, A. Yu. Ol'shanskii, E. Rips, M. Sapir. Isoperimetric functions of groups and computational complexity of the word problem. Annals of Mathematics (2), vol 156 (2002), no. 2, pp. 467518.
  29. S. M. Gersten, The double exponential theorem for isodiametric and isoperimetric functions. International Journal of Algebra and Computation, vol. 1 (1991), no. 3, pp. 321327.
  30. S. M. Gersten and T. Riley, Filling length in finitely presentable groups. Dedicated to John Stallings on the occasion of his 65th birthday. Geometriae Dedicata, vol. 92 (2002), pp. 4158.
  31. J. M. Alonso, X. Wang and S. J. Pride, Higher-dimensional isoperimetric (or Dehn) functions of groups. Journal of Group Theory, vol. 2 (1999), no. 1, pp. 81112.
  32. M. Gromov, Asymptotic invariants of infinite groups, in: "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1295.
  33. O. Bogopolskii and E. Ventura. The mean Dehn functions of abelian groups. Journal of Group Theory, vol. 11 (2008), no. 4, pp. 569586.
  34. Robert Young. Averaged Dehn functions for nilpotent groups. Topology, vol. 47 (2008), no. 5, pp. 351367.
  35. E. G. Kukina and V. A. Roman'kov. Subquadratic Growth of the Averaged Dehn Function for Free Abelian Groups. Siberian Mathematical Journal, vol. 44 (2003), no. 4, 15739260.
  36. Densi Osin. Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems. Memoirs of the American Mathematical Society, vol. 179 (2006), no. 843. American Mathematical Society. ISBN   978-0-8218-3821-1.
  37. R. I. Grigorchuk and S. V. Ivanov, On Dehn Functions of Infinite Presentations of Groups, Geometric and Functional Analysis, vol. 18 (2009), no. 6, pp. 18411874

Further reading

Related Research Articles

In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group is the algorithmic problem of deciding whether two words in the generators represent the same element. The word problem is a well-known example of an undecidable problem.

<span class="mw-page-title-main">Hyperbolic space</span> Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In mathematics, the isoperimetric dimension of a manifold is a notion of dimension that tries to capture how the large-scale behavior of the manifold resembles that of a Euclidean space.

<span class="mw-page-title-main">Geometric group theory</span> Area in mathematics devoted to the study of finitely generated groups

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups can act non-trivially.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

<span class="mw-page-title-main">Hyperbolic group</span> Mathematical concept

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov. The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology, and combinatorial group theory. In a very influential chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.

<span class="mw-page-title-main">Quasi-isometry</span> Function between two metric spaces that only respects their large-scale geometry

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

In the mathematical area of geometric group theory, a Van Kampen diagram is a planar diagram used to represent the fact that a particular word in the generators of a group given by a group presentation represents the identity element in that group.

In the mathematical subject of group theory, the Stallings theorem about ends of groups states that a finitely generated group has more than one end if and only if the group admits a nontrivial decomposition as an amalgamated free product or an HNN extension over a finite subgroup. In the modern language of Bass–Serre theory the theorem says that a finitely generated group has more than one end if and only if admits a nontrivial action on a simplicial tree with finite edge-stabilizers and without edge-inversions.

James W. Cannon is an American mathematician working in the areas of low-dimensional topology and geometric group theory. He was an Orson Pratt Professor of Mathematics at Brigham Young University.

In the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm. Small cancellation methods are also used for constructing Tarski monsters, and for solutions of Burnside's problem.

In the mathematical subject of geometric group theory, a train track map is a continuous map f from a finite connected graph to itself which is a homotopy equivalence and which has particularly nice cancellation properties with respect to iterations. This map sends vertices to vertices and edges to nontrivial edge-paths with the property that for every edge e of the graph and for every positive integer n the path fn(e) is immersed, that is fn(e) is locally injective on e. Train-track maps are a key tool in analyzing the dynamics of automorphisms of finitely generated free groups and in the study of the Culler–Vogtmann Outer space.

<span class="mw-page-title-main">Mladen Bestvina</span> Croatian-American mathematician

Mladen Bestvina is a Croatian-American mathematician working in the area of geometric group theory. He is a Distinguished Professor in the Department of Mathematics at the University of Utah.

In the mathematical subject of geometric group theory, the Baumslag–Gersten group, also known as the Baumslag group, is a particular one-relator group exhibiting some remarkable properties regarding its finite quotient groups, its Dehn function and the complexity of its word problem.

In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves.

In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

Stephen M. Gersten was an American mathematician, specializing in finitely presented groups and their geometric properties.