Stretch factor

Last updated

The stretch factor (i.e., Lipschitz constant ) of an embedding measures the factor by which the embedding distorts distances. Suppose that one metric space S is embedded into another metric space T by a metric map, a continuous one-to-one function f that preserves or reduces the distance between every pair of points. Then the embedding gives rise to two different notions of distance between pairs of points in S. Any pair of points (x,y) in S has both an intrinsic distance, the distance from x to y in S, and a smaller extrinsic distance, the distance from f(x) to f(y) in T. The stretch factor of the pair is the ratio between these two distances, d(f(x),f(y))/d(x,y). The stretch factor of the whole mapping is the supremum of the stretch factors of all pairs of points. The stretch factor has also been called the distortion[ disputed ] or dilation of the mapping.

The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distances between a set of points in the Euclidean plane. In this case, the embedded metric S is a finite metric space, whose distances are shortest path lengths in a graph, and the metric T into which S is embedded is the Euclidean plane. When the graph and its embedding are fixed, but the graph edge weights can vary, the stretch factor is minimized when the weights are exactly the Euclidean distances between the edge endpoints. Research in this area has focused on finding sparse graphs for a given point set that have low stretch factor. [1]

The Johnson–Lindenstrauss lemma asserts that any finite set with n points in a large Euclidean space can be embedded into a Euclidean space of dimension O(log n) with distortion 1 + ε, for any constant ε > 0, where the constant factor in the O-notation depends on the choice of ε. [2] This result, and related methods of constructing low-distortion metric embeddings, are important in the theory of approximation algorithms. A major open problem in this area is the GNRS conjecture, which (if true) would characterize the families of graphs that have bounded-stretch embeddings into spaces as being all minor-closed graph families.

In knot theory, the distortion of a knot is a knot invariant, the minimum stretch factor of any embedding of the knot as a space curve in Euclidean space. Undergraduate researcher John Pardon won the 2012 Morgan Prize for his research showing that there is no upper bound on the distortion of torus knots, solving a problem originally posed by Mikhail Gromov. [3] [4]

In the study of the curve-shortening flow, in which each point of a curve in the Euclidean plane moves perpendicularly to the curve, with speed proportional to the local curvature, Huisken (1998) proved that the stretch factor of any simple closed smooth curve (with intrinsic distances measured by arc length) changes monotonically. More specifically, at each pair (x,y) that forms a local maximum of the stretch factor, the stretch factor is strictly decreasing, except when the curve is a circle. This property was later used to simplify the proof of the Gage–Hamilton–Grayson theorem, according to which every simple closed smooth curve stays simple and smooth until it collapses to a point, converging in shape to a circle before doing so. [5] [6]

Related Research Articles

Homeomorphism Isomorphism in topology (mathematics)

In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words ὅμοιος (homoios) = similar or same and μορφή (morphē) = shape or form, introduced to mathematics by Henri Poincaré in 1895.

In mathematics, a metric space is a set together with a metric on the set. The metric is a function that defines a concept of distance between any two members of the set, which are usually called points. The metric satisfies the following properties:

The Nash embedding theorems, named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instance, bending but neither stretching nor tearing a page of paper gives an isometric embedding of the page into Euclidean space because curves drawn on the page retain the same arclength however the page is bent.

Lipschitz continuity Strong form of uniform continuity

In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that has bounded first derivatives is Lipschitz continuous.

Isometry Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

Nonlinear dimensionality reduction Summary of algorithms for nonlinear dimensionality reduction

High-dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lies within lower-dimensional space. If the data of interest is of low enough dimension, the data can be visualised in the low-dimensional space.

In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance . These maps are the morphisms in the category of metric spaces, Met . They are also called Lipschitz functions with Lipschitz constant 1, nonexpansive maps, nonexpanding maps, weak contractions, or short maps.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

Euclidean minimum spanning tree

A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the selected segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

Manifold Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space.

A geometric spanner or a t-spanner graph or a t-spanner was initially introduced as a weighted graph over a set of points as its vertices for which there is a t-path between any pair of vertices for a fixed parameter t. A t-path is defined as a path through the graph with weight at most t times the spatial distance between its endpoints. The parameter t is called the stretch factor or dilation factor of the spanner.

In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.

Quasi-isometry

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

In mathematics, the Johnson–Lindenstrauss lemma is a result named after William B. Johnson and Joram Lindenstrauss concerning low-distortion embeddings of points from high-dimensional into low-dimensional Euclidean space. The lemma states that a set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved. The map used for the embedding is at least Lipschitz, and can even be taken to be an orthogonal projection.

Two-dimensional Euclidean space Geometric model of the planar projection of the physical universe

Two-dimensional Euclidean space or simply two-dimensional space is a geometric setting in which two values are required to determine the position of an element on the plane. The set of pairs of real numbers with appropriate structure often serves as the canonical example of a Euclidean plane, the two-dimensional Euclidean space; for a generalization of the concept, see dimension. Two-dimensional space can be seen as a projection of the physical universe onto a plane. Usually, it is thought of as a Euclidean space and the two dimensions are called length and width.

Delone set Well-spaced set of points in a metric space

In the mathematical theory of metric spaces, ε-nets, ε-packings, ε-coverings, uniformly discrete sets, relatively dense sets, and Delone sets are several closely related definitions of well-spaced sets of points, and the packing radius and covering radius of these sets measure how well-spaced they are. These sets have applications in coding theory, approximation algorithms, and the theory of quasicrystals.

Curve-shortening flow Motion of a curve based on its curvature

In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution.

Greedy geometric spanner

In computational geometry, a greedy geometric spanner is an undirected graph whose distances approximate the Euclidean distances among a finite set of points in a Euclidean space. The vertices of the graph represent these points. The edges of the spanner are selected by a greedy algorithm that includes an edge whenever its two endpoints are not connected by a short path of shorter edges. The greedy spanner was first described in the PhD thesis of Gautam Das and conference paper and subsequent journal paper by Ingo Althöfer et al. These sources also credited Marshall Bern (unpublished) with the independent discovery of the same construction.

In theoretical computer science and metric geometry, the GNRS conjecture connects the theory of graph minors, the stretch factor of embeddings, and the approximation ratio of multi-commodity flow problems. It is named after Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair, who formulated it in 2004.

References

  1. Narasimhan, Giri; Smid, Michiel (2007), Geometric Spanner Networks, Cambridge University Press, ISBN   0-521-81513-4 .
  2. Johnson, William B.; Lindenstrauss, Joram (1984), "Extensions of Lipschitz mappings into a Hilbert space", in Beals, Richard; Beck, Anatole; Bellow, Alexandra; et al. (eds.), Conference in modern analysis and probability (New Haven, Conn., 1982) , Contemporary Mathematics, vol. 26, Providence, RI: American Mathematical Society, pp.  189–206, doi:10.1090/conm/026/737400, ISBN   0-8218-5030-X, MR   0737400 .
  3. Kehoe, Elaine (April 2012), "2012 Morgan Prize", Notices of the American Mathematical Society , 59 (4): 569–571, doi: 10.1090/noti825 .
  4. Pardon, John (2011), "On the distortion of knots on embedded surfaces", Annals of Mathematics , Second Series, 174 (1): 637–646, arXiv: 1010.1972 , doi:10.4007/annals.2011.174.1.21, MR   2811613 .
  5. Huisken, Gerhard (1998), "A distance comparison principle for evolving curves", The Asian Journal of Mathematics, 2 (1): 127–133, hdl: 11858/00-001M-0000-0013-5964-4 , MR   1656553 .
  6. Andrews, Ben; Bryan, Paul (2011), "Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson's theorem", Journal für die Reine und Angewandte Mathematik , 653: 179–187, arXiv: 0908.2682 , doi:10.1515/CRELLE.2011.026, MR   2794630 .