Bing metrization theorem

Last updated

In topology, the Bing metrization theorem, named after R. H. Bing, characterizes when a topological space is metrizable.

Contents

Formal statement

The theorem states that a topological space is metrizable if and only if it is regular and T0 and has a σ-discrete basis. A family of sets is called σ-discrete when it is a union of countably many discrete collections, where a family of subsets of a space is called discrete, when every point of has a neighborhood that intersects at most one member of .

History

The theorem was proven by Bing in 1951 and was an independent discovery with the Nagata–Smirnov metrization theorem that was proved independently by both Nagata (1950) and Smirnov (1951). Both theorems are often merged in the Bing-Nagata-Smirnov metrization theorem. It is a common tool to prove other metrization theorems, e.g. the Moore metrization theorem – a collectionwise normal, Moore space is metrizable – is a direct consequence.

Comparison with other metrization theorems

Unlike the Urysohn's metrization theorem which provides a sufficient condition for metrization, this theorem provides both a necessary and sufficient condition for a topological space to be metrizable.

Related Research Articles

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is . Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

General topology Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have.

R. H. Bing was an American mathematician who worked mainly in the areas of geometric topology and continuum theory. His father was named Rupert Henry, but Bing's mother thought that "Rupert Henry" was too British for Texas. She compromised by abbreviating it to R. H. Consequently, R. H. does not stand for a first or middle name.

The Nagata–Smirnov metrization theorem in topology characterizes when a topological space is metrizable. The theorem states that a topological space is metrizable if and only if it is regular, Hausdorff and has a countably locally finite basis.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space which is invariant under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In functional analysis and related areas of mathematics a polar topology, topology of 𝒢-convergence or topology of uniform convergence on the sets of𝒢 is a method to define locally convex topologies on the vector spaces of a pairing.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

In mathematics, a nuclear space is a topological vector space with many of the good properties of finite-dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold.

In mathematics, more specifically point-set topology, a Moore space is a developable regular Hausdorff space. Equivalently, a topological space X is a Moore space if the following conditions hold:

In mathematics, a topological space is called collectionwise normal if for every discrete family Fi of closed subsets of there exists a pairwise disjoint family of open sets Ui, such that FiUi. A family of subsets of is called discrete when every point of has a neighbourhood that intersects at most one of the sets from . An equivalent definition demands that the above Ui are themselves a discrete family, which is stronger than pairwise disjoint.

In mathematics, particularly topology, collections of subsets are said to be locally discrete if they look like they have precisely one element from a local point of view. The study of locally discrete collections is worthwhile as Bing's metrization theorem shows.

In mathematics, a linear map is a mapping X → Y between two modules that preserves the operations of addition and scalar multiplication.

In mathematics, Kolmogorov's normability criterion is a theorem that provides a necessary and sufficient condition for a topological vector space to be normable, i.e. for the existence of a norm on the space that generates the given topology. The normability criterion can be seen as a result in same vein as the Nagata–Smirnov metrization theorem, which gives a necessary and sufficient condition for a topological space to be metrizable. The result was proved by the Russian mathematician Andrey Nikolayevich Kolmogorov in 1934.

The theorem on the surjection of Fréchet spaces is an important theorem, due to Stefan Banach, that characterizes when a continuous linear operator between Fréchet spaces is surjective.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS Y without any need to extend definitions from real/complex-valued functions to Y-valued functions.

In functional analysis, a topological homomorphism or simply homomorphism is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.

References