Ring of sets

Last updated

In mathematics, there are two different notions of a ring of sets, both referring to certain families of sets.

Contents

In order theory, a nonempty family of sets is called a ring (of sets) if it is closed under union and intersection. [1] That is, the following two statements are true for all sets and ,

  1. implies and
  2. implies

In measure theory, a nonempty family of sets is called a ring (of sets) if it is closed under union and relative complement (set-theoretic difference). [2] That is, the following two statements are true for all sets and ,

  1. implies and
  2. implies

This implies that a ring in the measure-theoretic sense always contains the empty set. Furthermore, for all sets A and B,

which shows that a family of sets closed under relative complement is also closed under intersection, so that a ring in the measure-theoretic sense is also a ring in the order-theoretic sense.

Examples

If X is any set, then the power set of X (the family of all subsets of X) forms a ring of sets in either sense.

If (X, ≤) is a partially ordered set, then its upper sets (the subsets of X with the additional property that if x belongs to an upper set U and xy, then y must also belong to U) are closed under both intersections and unions. However, in general it will not be closed under differences of sets.

The open sets and closed sets of any topological space are closed under both unions and intersections. [1]

On the real line R, the family of sets consisting of the empty set and all finite unions of half-open intervals of the form (a, b], with a, bR is a ring in the measure-theoretic sense.

If T is any transformation defined on a space, then the sets that are mapped into themselves by T are closed under both unions and intersections. [1]

If two rings of sets are both defined on the same elements, then the sets that belong to both rings themselves form a ring of sets. [1]

A ring of sets in the order-theoretic sense forms a distributive lattice in which the intersection and union operations correspond to the lattice's meet and join operations, respectively. Conversely, every distributive lattice is isomorphic to a ring of sets; in the case of finite distributive lattices, this is Birkhoff's representation theorem and the sets may be taken as the lower sets of a partially ordered set. [1]

A family of sets closed under union and relative complement is also closed under symmetric difference and intersection. Conversely, every family of sets closed under both symmetric difference and intersection is also closed under union and relative complement. This is due to the identities

  1. and

Symmetric difference and intersection together give a ring in the measure-theoretic sense the structure of a boolean ring.

In the measure-theoretic sense, a σ-ring is a ring closed under countable unions, and a δ-ring is a ring closed under countable intersections. Explicitly, a σ-ring over is a set such that for any sequence we have

Given a set a field of sets − also called an algebra over − is a ring that contains This definition entails that an algebra is closed under absolute complement A σ-algebra is an algebra that is also closed under countable unions, or equivalently a σ-ring that contains In fact, by de Morgan's laws, a δ-ring that contains is necessarily a σ-algebra as well. Fields of sets, and especially σ-algebras, are central to the modern theory of probability and the definition of measures.

A semiring (of sets) is a family of sets with the properties

    • If (3) holds, then if and only if
  1. implies and
  2. implies for some disjoint

Every ring (in the measure theory sense) is a semi-ring. On the other hand, on is a semi-ring but not a ring, since it is not closed under unions.

A semialgebra [3] or elementary family [4] is a collection of subsets of satisfying the semiring properties except with (3) replaced with:

This condition is stronger than (3), which can be seen as follows. If is a semialgebra and , then we can write for disjoint . Then:

and every since it is closed under intersection, and disjoint since they are contained in the disjoint 's. Moreover the condition is strictly stronger: any that is both a ring and a semialgebra is an algebra, hence any ring that is not an algebra is also not a semialgebra (e.g. the collection of finite sets on an infinite set ).

See also

Related Research Articles

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

<span class="mw-page-title-main">Probability space</span> Mathematical concept

In probability theory, a probability space or a probability triple is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die.

In mathematics, a base (or basis; pl.: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

<span class="mw-page-title-main">Symmetric difference</span> Elements in exactly one of two sets

In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .

In set theory and related branches of mathematics, a family can mean any of

In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.

In mathematics, an additive set function is a function mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function. However, a finitely additive set function might not have the additivity property for a union of an infinite number of sets. A σ-additive set function is a function that has the additivity property even for countably infinite many sets, that is,

In mathematics, particularly measure theory, a 𝜎-ideal, or sigma ideal, of a σ-algebra is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is in probability theory.

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞). A set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In measure theory and probability, the monotone class theorem connects monotone classes and 𝜎-algebras. The theorem says that the smallest monotone class containing an algebra of sets is precisely the smallest 𝜎-algebra containing  It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem.

In mathematics, a nonempty collection of sets is called a 𝜎-ring if it is closed under countable union and relative complementation.

In mathematics, a non-empty collection of sets is called a δ-ring if it is closed under union, relative complementation, and countable intersection. The name "delta-ring" originates from the German word for intersection, "Durschnitt", which is meant to highlight the ring's closure under countable intersection, in contrast to a 𝜎-ring which is closed under countable unions.

In mathematics, in particular in measure theory, a content is a real-valued function defined on a collection of subsets such that

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

<span class="mw-page-title-main">Ultrafilter on a set</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.

References

  1. 1 2 3 4 5 Birkhoff, Garrett (1937), "Rings of sets", Duke Mathematical Journal, 3 (3): 443–454, doi:10.1215/S0012-7094-37-00334-X, MR   1546000 .
  2. De Barra, Gar (2003), Measure Theory and Integration, Horwood Publishing, p. 13, ISBN   9781904275046 .
  3. Durrett 2019, pp. 3–4.
  4. Folland 1999, p. 23.

Sources