Glossary of field theory

Last updated

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.)

Contents

Definition of a field

A field is a commutative ring (F, +, *) in which 0 ≠ 1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.

The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;

The ring of polynomials in the variable x with coefficients in F is denoted by F[x].

Basic definitions

Characteristic
The characteristic of the field F is the smallest positive integer n such that n·1 = 0; here n·1 stands for n summands 1 + 1 + 1 + ... + 1. If no such n exists, we say the characteristic is zero. Every non-zero characteristic is a prime number. For example, the rational numbers, the real numbers and the p-adic numbers have characteristic 0, while the finite field Zp with p being prime has characteristic p.
Subfield
A subfield of a field F is a subset of F which is closed under the field operation + and * of F and which, with these operations, forms itself a field.
Prime field
The prime field of the field F is the unique smallest subfield of F.
Extension field
If F is a subfield of E then E is an extension field of F. We then also say that E/F is a field extension.
Degree of an extension
Given an extension E/F, the field E can be considered as a vector space over the field F, and the dimension of this vector space is the degree of the extension, denoted by [E : F].
Finite extension
A finite extension is a field extension whose degree is finite.
Algebraic extension
If an element α of an extension field E over F is the root of a non-zero polynomial in F[x], then α is algebraic over F. If every element of E is algebraic over F, then E/F is an algebraic extension.
Generating set
Given a field extension E/F and a subset S of E, we write F(S) for the smallest subfield of E that contains both F and S. It consists of all the elements of E that can be obtained by repeatedly using the operations +, −, *, / on the elements of F and S. If E = F(S), we say that E is generated by S over F.
Primitive element
An element α of an extension field E over a field F is called a primitive element if E=F(α), the smallest extension field containing α. Such an extension is called a simple extension .
Splitting field
A field extension generated by the complete factorisation of a polynomial.
Normal extension
A field extension generated by the complete factorisation of a set of polynomials.
Separable extension
An extension generated by roots of separable polynomials.
Perfect field
A field such that every finite extension is separable. All fields of characteristic zero, and all finite fields, are perfect.
Imperfect degree
Let F be a field of characteristic p > 0; then Fp is a subfield. The degree [F : Fp] is called the imperfect degree of F. The field F is perfect if and only if its imperfect degree is 1. For example, if F is a function field of n variables over a finite field of characteristic p > 0, then its imperfect degree is pn. [1]
Algebraically closed field
A field F is algebraically closed if every polynomial in F[x] has a root in F; equivalently: every polynomial in F[x] is a product of linear factors.
Algebraic closure
An algebraic closure of a field F is an algebraic extension of F which is algebraically closed. Every field has an algebraic closure, and it is unique up to an isomorphism that fixes F.
Transcendental
Those elements of an extension field of F that are not algebraic over F are transcendental over F.
Algebraically independent elements
Elements of an extension field of F are algebraically independent over F if they don't satisfy any non-zero polynomial equation with coefficients in F.
Transcendence degree
The number of algebraically independent transcendental elements in a field extension. It is used to define the dimension of an algebraic variety.

Homomorphisms

Field homomorphism
A field homomorphism between two fields E and F is a ring homomorphism, i.e., a function
f : EF
such that, for all x, y in E,
f(x + y) = f(x) + f(y)
f(xy) = f(x) f(y)
f(1) = 1.
For fields E and F, these properties imply that f(0) = 0, f(x−1) = f(x)−1 for x in E×, and that f is injective. Fields, together with these homomorphisms, form a category. Two fields E and F are called isomorphic if there exists a bijective homomorphism
f : EF.
The two fields are then identical for all practical purposes; however, not necessarily in a unique way. See, for example, Complex conjugate .

Types of fields

Finite field
A field with finitely many elements, a.k.a. Galois field.
Ordered field
A field with a total order compatible with its operations.
Rational numbers
Real numbers
Complex numbers
Number field
Finite extension of the field of rational numbers.
Algebraic numbers
The field of algebraic numbers is the smallest algebraically closed extension of the field of rational numbers. Their detailed properties are studied in algebraic number theory.
Quadratic field
A degree-two extension of the rational numbers.
Cyclotomic field
An extension of the rational numbers generated by a root of unity.
Totally real field
A number field generated by a root of a polynomial, having all its roots real numbers.
Formally real field
Real closed field
Global field
A number field or a function field of one variable over a finite field.
Local field
A completion of some global field (w.r.t. a prime of the integer ring).
Complete field
A field complete w.r.t. to some valuation.
Pseudo algebraically closed field
A field in which every variety has a rational point. [2]
Henselian field
A field satisfying Hensel lemma w.r.t. some valuation. A generalization of complete fields.
Hilbertian field
A field satisfying Hilbert's irreducibility theorem: formally, one for which the projective line is not thin in the sense of Serre. [3] [4]
Kroneckerian field
A totally real algebraic number field or a totally imaginary quadratic extension of a totally real field. [5]
CM-field or J-field
An algebraic number field which is a totally imaginary quadratic extension of a totally real field. [6]
Linked field
A field over which no biquaternion algebra is a division algebra. [7]
Frobenius field
A pseudo algebraically closed field whose absolute Galois group has the embedding property. [8]

Field extensions

Let E/F be a field extension.

Algebraic extension
An extension in which every element of E is algebraic over F.
Simple extension
An extension which is generated by a single element, called a primitive element, or generating element. [9] The primitive element theorem classifies such extensions. [10]
Normal extension
An extension that splits a family of polynomials: every root of the minimal polynomial of an element of E over F is also in E.
Separable extension
An algebraic extension in which the minimal polynomial of every element of E over F is a separable polynomial, that is, has distinct roots. [11]
Galois extension
A normal, separable field extension.
Primary extension
An extension E/F such that the algebraic closure of F in E is purely inseparable over F; equivalently, E is linearly disjoint from the separable closure of F. [12]
Purely transcendental extension
An extension E/F in which every element of E not in F is transcendental over F. [13] [14]
Regular extension
An extension E/F such that E is separable over F and F is algebraically closed in E. [12]
Simple radical extension
A simple extension E/F generated by a single element α satisfying αn = b for an element b of F. In characteristic p, we also take an extension by a root of an Artin–Schreier polynomial to be a simple radical extension. [15]
Radical extension
A tower F = F0 < F1 < ⋅⋅⋅ < Fk = E where each extension Fi / Fi−1 is a simple radical extension. [15]
Self-regular extension
An extension E/F such that EFE is an integral domain. [16]
Totally transcendental extension
An extension E/F such that F is algebraically closed in F. [14]
Distinguished class
A class C of field extensions with the three properties [17]
  1. If E is a C-extension of F and F is a C-extension of K then E is a C-extension of K.
  2. If E and F are C-extensions of K in a common overfield M, then the compositum EF is a C-extension of K.
  3. If E is a C-extension of F and E > K > F then E is a C-extension of K.

Galois theory

Galois extension
A normal, separable field extension.
Galois group
The automorphism group of a Galois extension. When it is a finite extension, this is a finite group of order equal to the degree of the extension. Galois groups for infinite extensions are profinite groups.
Kummer theory
The Galois theory of taking nth roots, given enough roots of unity. It includes the general theory of quadratic extensions.
Artin–Schreier theory
Covers an exceptional case of Kummer theory, in characteristic p.
Normal basis
A basis in the vector space sense of L over K, on which the Galois group of L over K acts transitively.
Tensor product of fields
A different foundational piece of algebra, including the compositum operation (join of fields).

Extensions of Galois theory

Inverse problem of Galois theory
Given a group G, find an extension of the rational number or other field with G as Galois group.
Differential Galois theory
The subject in which symmetry groups of differential equations are studied along the lines traditional in Galois theory. This is actually an old idea, and one of the motivations when Sophus Lie founded the theory of Lie groups. It has not, probably, reached definitive form.
Grothendieck's Galois theory
A very abstract approach from algebraic geometry, introduced to study the analogue of the fundamental group.

Citations

Related Research Articles

In mathematics, an algebraic extension is a field extension L/K such that every element of the larger field L is algebraic over the smaller field K; that is, every element of L is a root of a non-zero polynomial with coefficients in K. A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic.

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

In mathematics, if L is a field extension of K, then an element a of L is called an algebraic element over K, or just algebraic overK, if there exists some non-zero polynomial g(x) with coefficients in K such that g(a) = 0. Elements of L which are not algebraic over K are called transcendental over K.

In mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of

<span class="mw-page-title-main">Algebraic independence</span> Set without nontrivial polynomial equalities

In abstract algebra, a subset of a field is algebraically independent over a subfield if the elements of do not satisfy any non-trivial polynomial equation with coefficients in .

In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial.

In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield.

In field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extension is called a simple extension in this case. The theorem states that a finite extension is simple if and only if there are only finitely many intermediate fields. An older result, also often called "primitive element theorem", states that every finite separable extension is simple; it can be seen as a consequence of the former theorem. These theorems imply in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

In mathematics, a Galois extension is an algebraic field extension E/F that is normal and separable; or equivalently, E/F is algebraic, and the field fixed by the automorphism group Aut(E/F) is precisely the base field F. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory.

In algebra, a field k is perfect if any one of the following equivalent conditions holds:

In mathematics, a field F is called quasi-algebraically closed if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper. The idea itself is attributed to Lang's advisor Emil Artin.

<span class="mw-page-title-main">Absolute Galois group</span>

In mathematics, the absolute Galois groupGK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group.

In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field K, by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within K a polynomial that does not always factorise. One is also allowed to take finite unions.

In mathematics, a field is pseudo algebraically closed if it satisfies certain properties which hold for algebraically closed fields. The concept was introduced by James Ax in 1967.

In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a field and its absolute Galois group. It is an interdisciplinary subject as it uses tools from algebraic number theory, arithmetic geometry, algebraic geometry, model theory, the theory of finite groups and of profinite groups.

References