This article needs additional citations for verification .(December 2009) |
In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field.
The definition given above is not a first-order definition, as it requires quantifiers over sets. However, the following criteria can be coded as (infinitely many) first-order sentences in the language of fields and are equivalent to the above definition.
A formally real field F is a field that also satisfies one of the following equivalent properties: [1] [2]
It is easy to see that these three properties are equivalent. It is also easy to see that a field that admits an ordering must satisfy these three properties.
A proof that if F satisfies these three properties, then F admits an ordering uses the notion of prepositive cones and positive cones. Suppose −1 is not a sum of squares; then a Zorn's Lemma argument shows that the prepositive cone of sums of squares can be extended to a positive cone P ⊆ F. One uses this positive cone to define an ordering: a ≤ b if and only if b − a belongs to P.
A formally real field with no formally real proper algebraic extension is a real closed field. [3] If K is formally real and Ω is an algebraically closed field containing K, then there is a real closed subfield of Ω containing K. A real closed field can be ordered in a unique way, [3] and the non-negative elements are exactly the squares.
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals.
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.
In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0.
In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 (caret) or x**2 may be used in place of x2. The adjective which corresponds to squaring is quadratic.
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.
In mathematics, Milnor K-theory is an algebraic invariant defined by John Milnor (1970) as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic K-theory and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for and . Fortunately, it can be shown Milnor K-theory is a part of algebraic K-theory, which in general is the easiest part to compute.
In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x as
In linear algebra, a cone—sometimes called a linear cone for distinguishing it from other sorts of cones—is a subset of a vector space that is closed under scalar multiplication; that is, C is a cone if implies for every scalar s.
In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,…, xn that are true of a sequence of elements of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.
In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.
In mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite.
In mathematics, Hahn series are a type of formal infinite series. They are a generalization of Puiseux series and were first introduced by Hans Hahn in 1907. They allow for arbitrary exponents of the indeterminate so long as the set supporting them forms a well-ordered subset of the value group. Hahn series were first introduced, as groups, in the course of the proof of the Hahn embedding theorem and then studied by him in relation to Hilbert's second problem.
In mathematics, a p-adically closed field is a field that enjoys a closure property that is a close analogue for p-adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.
In mathematics, the Levi-Civita field, named after Tullio Levi-Civita, is a non-Archimedean ordered field; i.e., a system of numbers containing infinite and infinitesimal quantities. Each member can be constructed as a formal series of the form
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.
In algebra, a Pythagorean field is a field in which every sum of two squares is a square: equivalently it has Pythagoras number equal to 1. A Pythagorean extension of a field is an extension obtained by adjoining an element for some in . So a Pythagorean field is one closed under taking Pythagorean extensions. For any field there is a minimal Pythagorean field containing it, unique up to isomorphism, called its Pythagorean closure. The Hilbert field is the minimal ordered Pythagorean field.
In field theory, a branch of mathematics, the Stufes(F) of a field F is the least number of squares that sum to −1. If −1 cannot be written as a sum of squares, s(F) = . In this case, F is a formally real field. Albrecht Pfister proved that the Stufe, if finite, is always a power of 2, and that conversely every power of 2 occurs.