Normal basis

Last updated

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

Contents

Normal basis theorem

Let be a Galois extension with Galois group . The classical normal basis theorem states that there is an element such that forms a basis of K, considered as a vector space over F. That is, any element can be written uniquely as for some elements

A normal basis contrasts with a primitive element basis of the form , where is an element whose minimal polynomial has degree .

Group representation point of view

A field extension K / F with Galois group G can be naturally viewed as a representation of the group G over the field F in which each automorphism is represented by itself. Representations of G over the field F can be viewed as left modules for the group algebra F[G]. Every homomorphism of left F[G]-modules is of form for some . Since is a linear basis of F[G] over F, it follows easily that is bijective iff generates a normal basis of K over F. The normal basis theorem therefore amounts to the statement saying that if K / F is finite Galois extension, then as left -module. In terms of representations of G over F, this means that K is isomorphic to the regular representation.

Case of finite fields

For finite fields this can be stated as follows: [1] Let denote the field of q elements, where q = pm is a prime power, and let denote its extension field of degree n ≥ 1. Here the Galois group is with a cyclic group generated by the q-power Frobenius automorphism with Then there exists an element βK such that

is a basis of K over F.

Proof for finite fields

In case the Galois group is cyclic as above, generated by with the normal basis theorem follows from two basic facts. The first is the linear independence of characters: a multiplicative character is a mapping χ from a group H to a field K satisfying ; then any distinct characters are linearly independent in the K-vector space of mappings. We apply this to the Galois group automorphisms thought of as mappings from the multiplicative group . Now as an F-vector space, so we may consider as an element of the matrix algebra Mn(F); since its powers are linearly independent (over K and a fortiori over F), its minimal polynomial must have degree at least n, i.e. it must be .

The second basic fact is the classification of finitely generated modules over a PID such as . Every such module M can be represented as , where may be chosen so that they are monic polynomials or zero and is a multiple of . is the monic polynomial of smallest degree annihilating the module, or zero if no such non-zero polynomial exists. In the first case , in the second case . In our case of cyclic G of size n generated by we have an F-algebra isomorphism where X corresponds to , so every -module may be viewed as an -module with multiplication by X being multiplication by . In case of K this means , so the monic polynomial of smallest degree annihilating K is the minimal polynomial of . Since K is a finite dimensional F-space, the representation above is possible with . Since we can only have , and as F[X]-modules. (Note this is an isomorphism of F-linear spaces, but not of rings or F-algebras.) This gives isomorphism of -modules that we talked about above, and under it the basis on the right side corresponds to a normal basis of K on the left.

Note that this proof would also apply in the case of a cyclic Kummer extension.

Example

Consider the field over , with Frobenius automorphism . The proof above clarifies the choice of normal bases in terms of the structure of K as a representation of G (or F[G]-module). The irreducible factorization

means we have a direct sum of F[G]-modules (by the Chinese remainder theorem):

The first component is just , while the second is isomorphic as an F[G]-module to under the action (Thus as F[G]-modules, but not as F-algebras.)

The elements which can be used for a normal basis are precisely those outside either of the submodules, so that and . In terms of the G-orbits of K, which correspond to the irreducible factors of:

the elements of are the roots of , the nonzero elements of the submodule are the roots of , while the normal basis, which in this case is unique, is given by the roots of the remaining factor .

By contrast, for the extension field in which n = 4 is divisible by p = 2, we have the F[G]-module isomorphism

Here the operator is not diagonalizable, the module L has nested submodules given by generalized eigenspaces of , and the normal basis elements β are those outside the largest proper generalized eigenspace, the elements with .

Application to cryptography

The normal basis is frequently used in cryptographic applications based on the discrete logarithm problem, such as elliptic curve cryptography, since arithmetic using a normal basis is typically more computationally efficient than using other bases.

For example, in the field above, we may represent elements as bit-strings:

where the coefficients are bits Now we can square elements by doing a left circular shift, , since squaring β4 gives β8 = β. This makes the normal basis especially attractive for cryptosystems that utilize frequent squaring.

Proof for the case of infinite fields

Suppose is a finite Galois extension of the infinite field F. Let [K : F] = n, , where . By the primitive element theorem there exists such and . Let us write . 's (monic) minimal polynomial f over K is the irreducible degree n polynomial given by the formula

Since f is separable (it has simple roots) we may define

In other words,

Note that and for . Next, define an matrix A of polynomials over K and a polynomial D by

Observe that , where k is determined by ; in particular iff . It follows that is the permutation matrix corresponding to the permutation of G which sends each to . (We denote by the matrix obtained by evaluating at .) Therefore, . We see that D is a non-zero polynomial, and therefore it has only a finite number of roots. Since we assumed F is infinite, we can find such that . Define

We claim that is a normal basis. We only have to show that are linearly independent over F, so suppose for some . Applying the automorphism yields for all i. In other words, . Since , we conclude that , which completes the proof.

It is tempting to take because . But this is impermissible because we used the fact that to conclude that for any F-automorphism and polynomial over the value of the polynomial at a equals .

Primitive normal basis

A primitive normal basis of an extension of finite fields E / F is a normal basis for E / F that is generated by a primitive element of E, that is a generator of the multiplicative group K×. (Note that this is a more restrictive definition of primitive element than that mentioned above after the general normal basis theorem: one requires powers of the element to produce every non-zero element of K, not merely a basis.) Lenstra and Schoof (1987) proved that every finite field extension possesses a primitive normal basis, the case when F is a prime field having been settled by Harold Davenport.

Free elements

If K / F is a Galois extension and x in K generates a normal basis over F, then x is free in K / F. If x has the property that for every subgroup H of the Galois group G, with fixed field KH, x is free for K / KH, then x is said to be completely free in K / F. Every Galois extension has a completely free element. [2]

See also

Related Research Articles

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by C. Moreau, counts the number of distinct necklaces of n colored beads chosen out of α available colors, arranged in a cycle. Unlike the usual problem of graph coloring, the necklaces are assumed to be aperiodic, and counted up to rotation, but without flipping over. This counting function also describes the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field.

In field theory, the primitive element theorem states that every finite separable field extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.

The GHK algorithm is an importance sampling method for simulating choice probabilities in the multivariate probit model. These simulated probabilities can be used to recover parameter estimates from the maximized likelihood equation using any one of the usual well known maximization methods. Train has well documented steps for implementing this algorithm for a multinomial probit model. What follows here will apply to the binary multivariate probit model.

This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry.

References

  1. Nader H. Bshouty; Gadiel Seroussi (1989), Generalizations of the normal basis theorem of finite fields (PDF), p. 1; SIAM J. Discrete Math. 3 (1990), no. 3, 330–337.
  2. Dirk Hachenberger, Completely free elements, in Cohen & Niederreiter (1996) pp. 97–107 Zbl   0864.11066