Hendrik Lenstra | |
---|---|
Born | |
Nationality | Dutch |
Alma mater | University of Amsterdam |
Known for | Lenstra elliptic-curve factorization Lenstra–Lenstra–Lovász lattice basis reduction algorithm Lenstra–Pomerance–Wagstaff conjecture APR-CL primarily test |
Awards |
|
Scientific career | |
Fields | Mathematics |
Institutions | University of California, Berkeley University of Leiden |
Thesis | Euclidische getallenlichamen (1977) |
Doctoral advisor | Frans Oort |
Doctoral students |
Hendrik Willem Lenstra Jr. (born 16 April 1949, Zaandam) is a Dutch mathematician.
Lenstra received his doctorate from the University of Amsterdam in 1977 and became a professor there in 1978. In 1987, he was appointed to the faculty of the University of California, Berkeley; starting in 1998, he divided his time between Berkeley and the University of Leiden, until 2003, when he retired from Berkeley to take a full-time position at Leiden. [1]
Three of his brothers, Arjen Lenstra, Andries Lenstra, and Jan Karel Lenstra, are also mathematicians. Jan Karel Lenstra is the former director of the Netherlands Centrum Wiskunde & Informatica (CWI). Hendrik Lenstra was the Chairman of the Program Committee of the International Congress of Mathematicians in 2010. [2]
Lenstra has worked principally in computational number theory. He is well known for:
In 1984, Lenstra became a member of the Royal Netherlands Academy of Arts and Sciences. [7] He won the Fulkerson Prize in 1985 for his research using the geometry of numbers to solve integer programs with few variables in time polynomial in the number of constraints. [8] He was awarded the Spinoza Prize in 1998, [9] and on 24 April 2009 he was made a Knight of the Order of the Netherlands Lion. In 2009, he was awarded a Gauss Lecture by the German Mathematical Society. In 2012, he became a fellow of the American Mathematical Society. [10]
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy. Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called compositeness tests instead of primality tests.
The AKS primality test is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". The algorithm was the first one which is able to determine in polynomial time, whether a given number is prime or composite without relying on mathematical conjectures such as the generalized Riemann hypothesis. The proof is also notable for not relying on the field of analysis. In 2006 the authors received both the Gödel Prize and Fulkerson Prize for their work.
In number theory, a branch of mathematics, the special number field sieve (SNFS) is a special-purpose integer factorization algorithm. The general number field sieve (GNFS) was derived from it.
The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at each (triennial) International Symposium of the MOS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by MPS.
László Lovász is a Hungarian mathematician and professor emeritus at Eötvös Loránd University, best known for his work in combinatorics, for which he was awarded the 2021 Abel Prize jointly with Avi Wigderson. He was the president of the International Mathematical Union from 2007 to 2010 and the president of the Hungarian Academy of Sciences from 2014 to 2020.
L-notation is an asymptotic notation analogous to big-O notation, denoted as for a bound variable tending to infinity. Like big-O notation, it is usually used to roughly convey the rate of growth of a function, such as the computational complexity of a particular algorithm.
In mathematics and computer science, a primality certificate or primality proof is a succinct, formal proof that a number is prime. Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself.
Arjen Klaas Lenstra is a Dutch mathematician, cryptographer and computational number theorist. He is a professor emeritus from the École Polytechnique Fédérale de Lausanne (EPFL) where he headed of the Laboratory for Cryptologic Algorithms.
GF(2) is the finite field with two elements.
An integer relation between a set of real numbers x1, x2, ..., xn is a set of integers a1, a2, ..., an, not all 0, such that
Peter Lawrence Montgomery was an American mathematician who worked at the System Development Corporation and Microsoft Research. He is best known for his contributions to computational number theory and mathematical aspects of cryptography, including the Montgomery multiplication method for arithmetic in finite fields, the use of Montgomery curves in applications of elliptic curves to integer factorization and other problems, and the Montgomery ladder, which is used to protect against side-channel attacks in elliptic curve cryptography.
In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.
Eugene Leighton (Gene) Lawler was an American computer scientist and a professor of computer science at the University of California, Berkeley.
Jan Karel Lenstra is a Dutch mathematician and operations researcher, known for his work on scheduling algorithms, local search, and the travelling salesman problem.
Alexander (Lex) Schrijver is a Dutch mathematician and computer scientist, a professor of discrete mathematics and optimization at the University of Amsterdam and a fellow at the Centrum Wiskunde & Informatica in Amsterdam. Since 1993 he has been co-editor in chief of the journal Combinatorica.
René Schoof is a mathematician from the Netherlands who works in number theory, arithmetic geometry, and coding theory.