Dual basis in a field extension

Last updated

In mathematics, the linear algebra concept of dual basis can be applied in the context of a finite extension L/K, by using the field trace. This requires the property that the field trace TrL/K provides a non-degenerate quadratic form over K. This can be guaranteed if the extension is separable; it is automatically true if K is a perfect field, and hence in the cases where K is finite, or of characteristic zero.

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Linear algebra branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as

In linear algebra, given a vector space V with a basis B of vectors indexed by an index set I, its dual set is a set B of vectors in the dual space V with the same index set I such that B and B form a biorthogonal system. The dual set is always linearly independent but does not necessarily span V. If it does span V, then B is called the dual basis or reciprocal basis for the basis B.

A dual basis is not a concrete basis like the polynomial basis or the normal basis; rather it provides a way of using a second basis for computations.

Basis (linear algebra) subset of a vector space, such that every vector is uniquely expressible as a linear combination over this set of vectors

In mathematics, a set B of elements (vectors) in a vector space V is called a basis, if every element of V may be written in a unique way as a (finite) linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates on B of the vector. The elements of a basis are called basis vectors.

In mathematics, a polynomial basis is a basis of a polynomial ring, viewed as a vector space over the field of coefficients, or as a free module over the ring of coefficients. The most common polynomial basis is the monomial basis consisting of all monomials. Other useful polynomial bases are the Bernstein basis and the various sequences of orthogonal polynomials.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

Consider two bases for elements in a finite field, GF(pm):

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

and

then B2 can be considered a dual basis of B1 provided

Here the trace of a value in GF(pm) can be calculated as follows:

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

Using a dual basis can provide a way to easily communicate between devices that use different bases, rather than having to explicitly convert between bases using the change of bases formula. Furthermore, if a dual basis is implemented then conversion from an element in the original basis to the dual basis can be accomplished with multiplication by the multiplicative identity (usually 1).

Change of basis operation in linear algebra

In linear algebra, a basis for a vector space of dimension n is a set of n vectors 1, …, αn), called basis vectors, with the property that every vector in the space can be expressed as a unique linear combination of the basis vectors. The matrix representations of operators are also determined by the chosen basis. Since it is often desirable to work with more than one basis for a vector space, it is of fundamental importance in linear algebra to be able to easily transform coordinate-wise representations of vectors and operators taken with respect to one basis to their equivalent representations with respect to another basis. Such a transformation is called a change of basis.

Related Research Articles

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries. They are

In mathematics, a trace class operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis. Trace class operators are essentially the same as nuclear operators, though many authors reserve the term "trace class operator" for the special case of nuclear operators on Hilbert spaces, and reserve "nuclear operator" for usage in more general Banach spaces.

In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the natural pairing of a finite-dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression. The contraction of a single mixed tensor occurs when a pair of literal indices of the tensor are set equal to each other and summed over. In the Einstein notation this summation is built into the notation. The result is another tensor with order reduced by 2.

Exterior algebra algebraic construction used in Euclidean geometry

In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors u and v, denoted by uv, is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of uv can be interpreted as the area of the parallelogram with sides u and v, which in three dimensions can also be computed using the cross product of the two vectors. Like the cross product, the exterior product is anticommutative, meaning that uv = −(vu) for all vectors u and v, but, unlike the cross product, the exterior product is associative. One way to visualize a bivector is as a family of parallelograms all lying in the same plane, having the same area, and with the same orientation—a choice of clockwise or counterclockwise.

Quantum group Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes various kinds of noncommutative algebras with additional structure. In general, a quantum group is some kind of Hopf algebra. There is no single, all-encompassing definition, but instead a family of broadly similar objects.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

SO(8)

In mathematics, SO(8) is the special orthogonal group acting on eight-dimensional Euclidean space. It could be either a real or complex simple Lie group of rank 4 and dimension 28.

Dirichlet distribution probability distribution

In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of Multivariate Beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.

In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set which represents the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.

In mathematical physics, the gamma matrices, , also known as the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra C1,3(R). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-½ particles.

In mathematics, a compact quantum group is an abstract structure on a unital separable C*-algebra axiomatized from those that exist on the commutative C*-algebra of "continuous complex-valued functions" on a compact quantum group.

In cryptography, XTR is an algorithm for public-key encryption. XTR stands for 'ECSTR', which is an abbreviation for Efficient and Compact Subgroup Trace Representation. It is a method to represent elements of a subgroup of a multiplicative group of a finite field. To do so, it uses the trace over to represent elements of a subgroup of .

In mathematics, a Chevalley basis for a simple complex Lie algebra is a basis constructed by Claude Chevalley with the property that all structure constants are integers. Chevalley used these bases to construct analogues of Lie groups over finite fields, called Chevalley groups. The Chevalley basis is the Cartan-Weyl basis, but with a different normalization.

In mathematics, the Schur orthogonality relations, which is proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

The cyclotomic fast Fourier transform is a type of fast Fourier transform algorithm over finite fields. This algorithm first decomposes a DFT into several circular convolutions, and then derives the DFT results from the circular convolution results. When applied to a DFT over , this algorithm has a very low multiplicative complexity. In practice, since there usually exist efficient algorithms for circular convolutions with specific lengths, this algorithm is very efficient.

Short integer solution (SIS) and ring-SIS problems are two average-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Ajtai who presented a family of one-way functions based on SIS problem. He showed that it is secure in an average case if the shortest vector problem is hard in a worst-case scenario.

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by german mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jaiger and Schtitte.