Field trace

Last updated

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

Contents

Definition

Let K be a field and L a finite extension (and hence an algebraic extension) of K. L can be viewed as a vector space over K. Multiplication by α, an element of L,

,

is a K-linear transformation of this vector space into itself. The trace, TrL/K(α), is defined as the trace (in the linear algebra sense) of this linear transformation. [1]

For α in L, let σ1(α), ..., σn(α) be the roots (counted with multiplicity) of the minimal polynomial of α over K (in some extension field of K). Then

If L/K is separable then each root appears only once [2] (however this does not mean the coefficient above is one; for example if α is the identity element 1 of K then the trace is [L:K] times 1).

More particularly, if L/K is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, [1] i.e.,

where Gal(L/K) denotes the Galois group of L/K.

Example

Let be a quadratic extension of . Then a basis of is If then the matrix of is:

,

and so, . [1] The minimal polynomial of α is X2 − 2aX + (a2db2).

Properties of the trace

Several properties of the trace function hold for any finite extension. [3]

The trace TrL/K : LK is a K-linear map (a K-linear functional), that is

.

If αK then

Additionally, trace behaves well in towers of fields: if M is a finite extension of L, then the trace from M to K is just the composition of the trace from M to L with the trace from L to K, i.e.

.

Finite fields

Let L = GF(qn) be a finite extension of a finite field K = GF(q). Since L/K is a Galois extension, if α is in L, then the trace of α is the sum of all the Galois conjugates of α, i.e. [4]

In this setting we have the additional properties: [5]

Theorem. [6] For bL, let Fb be the map Then FbFc if bc. Moreover, the K-linear transformations from L to K are exactly the maps of the form Fb as b varies over the field L.

When K is the prime subfield of L, the trace is called the absolute trace and otherwise it is a relative trace. [4]

Application

A quadratic equation, ax2 + bx + c = 0 with a  0, and coefficients in the finite field has either 0, 1 or 2 roots in GF(q) (and two roots, counted with multiplicity, in the quadratic extension GF(q2)). If the characteristic of GF(q) is odd, the discriminant Δ = b2 − 4ac indicates the number of roots in GF(q) and the classical quadratic formula gives the roots. However, when GF(q) has even characteristic (i.e., q = 2h for some positive integer h), these formulas are no longer applicable.

Consider the quadratic equation ax2 + bx + c = 0 with coefficients in the finite field GF(2h). [7] If b = 0 then this equation has the unique solution in GF(q). If b ≠ 0 then the substitution y = ax/b converts the quadratic equation to the form:

This equation has two solutions in GF(q) if and only if the absolute trace In this case, if y = s is one of the solutions, then y = s +1 is the other. Let k be any element of GF(q) with Then a solution to the equation is given by:

When h = 2m' +1, a solution is given by the simpler expression:

Trace form

When L/K is separable, the trace provides a duality theory via the trace form: the map from L × L to K sending (x, y) to TrL/K(xy) is a nondegenerate, symmetric bilinear form called the trace form. If L/K is a Galois extension, the trace form is invariant with respect to the Galois group.

The trace form is used in algebraic number theory in the theory of the different ideal.

The trace form for a finite degree field extension L/K has non-negative signature for any field ordering of K. [8] The converse, that every Witt equivalence class with non-negative signature contains a trace form, is true for algebraic number fields K. [8]

If L/K is an inseparable extension, then the trace form is identically 0. [9]

See also

Notes

  1. 1 2 3 Rotman 2002 , p. 940
  2. Rotman 2002 , p. 941
  3. Roman 2006 , p. 151
  4. 1 2 Lidl & Niederreiter 1997 , p.54
  5. Mullen & Panario 2013 , p. 21
  6. Lidl & Niederreiter 1997 , p.56
  7. Hirschfeld 1979 , pp. 3-4
  8. 1 2 Lorenz (2008) p.38
  9. Isaacs 1994 , p. 369 as footnoted in Rotman 2002 , p. 943

Related Research Articles

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field, and is an example of a self-dual topological ring.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In algebraic number theory, the different ideal is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field K, with respect to the field trace. It then encodes the ramification data for prime ideals of the ring of integers. It was introduced by Richard Dedekind in 1882.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

<span class="mw-page-title-main">Discriminant of an algebraic number field</span> Measures the size of the ring of integers of the algebraic number field

In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In field theory, a branch of mathematics, the minimal polynomial of an element α of a field extension is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1.

In linear algebra, particularly projective geometry, a semilinear map between vector spaces V and W over a field K is a function that is a linear map "up to a twist", hence semi-linear, where "twist" means "field automorphism of K". Explicitly, it is a function T : VW that is:

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

For certain applications in linear algebra, it is useful to know properties of the probability distribution of the largest eigenvalue of a finite sum of random matrices. Suppose is a finite sequence of random matrices. Analogous to the well-known Chernoff bound for sums of scalars, a bound on the following is sought for a given parameter t:

References

Further reading