Absolute Galois group

Last updated
The absolute Galois group of the real numbers is a cyclic group of order 2 generated by complex conjugation, since C is the separable closure of R and [C:R] = 2. Complex conjugate picture.svg
The absolute Galois group of the real numbers is a cyclic group of order 2 generated by complex conjugation, since C is the separable closure of R and [C:R] = 2.

In mathematics, the absolute Galois groupGK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group.

Contents

(When K is a perfect field, Ksep is the same as an algebraic closure Kalg of K. This holds e.g. for K of characteristic zero, or K a finite field.)

Examples

[1]

(For the notation, see Inverse limit.)

The Frobenius automorphism Fr is a canonical (topological) generator of GK. (Recall that Fr(x) = xq for all x in Kalg, where q is the number of elements in K.)

Problems

Some general results

Related Research Articles

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

In mathematics, Grothendieck's Galois theory is an abstract approach to the Galois theory of fields, developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of algebraic geometry. It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebraA which is simple, and for which the center is exactly K.

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.

In mathematics, a field F is called quasi-algebraically closed if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper. The idea itself is attributed to Lang's advisor Emil Artin.

The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.

In mathematics, a field is pseudo algebraically closed if it satisfies certain properties which hold for algebraically closed fields. The concept was introduced by James Ax in 1967.

In abstract algebra, cohomological dimension is an invariant of a group which measures the homological complexity of its representations. It has important applications in geometric group theory, topology, and algebraic number theory.

In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a field and its absolute Galois group. It is an interdisciplinary subject as it uses tools from algebraic number theory, arithmetic geometry, algebraic geometry, model theory, the theory of finite groups and of profinite groups.

Anabelian geometry is a theory in number theory which describes the way in which the algebraic fundamental group G of a certain arithmetic variety X, or some related geometric object, can help to restore X. The first results for number fields and their absolute Galois groups were obtained by Jürgen Neukirch, Masatoshi Gündüz Ikeda, Kenkichi Iwasawa, and Kôji Uchida prior to conjectures made about hyperbolic curves over number fields by Alexander Grothendieck. As introduced in Esquisse d'un Programme the latter were about how topological homomorphisms between two arithmetic fundamental groups of two hyperbolic curves over number fields correspond to maps between the curves. These Grothendieck conjectures were partially solved by Hiroaki Nakamura and Akio Tamagawa, while complete proofs were given by Shinichi Mochizuki.

In mathematics, Tate duality or Poitou–Tate duality is a duality theorem for Galois cohomology groups of modules over the Galois group of an algebraic number field or local field, introduced by John Tate (1962) and Georges Poitou (1967).

In mathematics, the Hasse invariant of an algebra is an invariant attached to a Brauer class of algebras over a field. The concept is named after Helmut Hasse. The invariant plays a role in local class field theory.

In mathematics, a profinite integer is an element of the ring

<span class="mw-page-title-main">Moshe Jarden</span> Israeli mathematician

Moshe Jarden is an Israeli mathematician, specialist in field arithmetic.

References

  1. Szamuely 2009, p. 14.
  2. Douady 1964
  3. Harbater 1995
  4. Pop 1995
  5. Haran & Jarden 2000
  6. Jannsen & Wingberg 1982
  7. Neukirch, Schmidt & Wingberg 2000 , theorem 7.5.10
  8. Neukirch, Schmidt & Wingberg 2000 , §VII.5
  9. "qtr" (PDF). Retrieved 2019-09-04.
  10. Neukirch, Schmidt & Wingberg 2000, p. 449.
  11. Mináč & Tân (2016) pp.255,284
  12. Harpaz & Wittenberg (2023) pp.1,41
  13. Fried & Jarden (2008) p.12
  14. Fried & Jarden (2008) pp.208,545

Sources