In field theory, a simple extension is a field extension that is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified.
The primitive element theorem provides a characterization of the finite simple extensions.
A field extension L/K is called a simple extension if there exists an element θ in L with
This means that every element of L can be expressed as a rational fraction in θ, with coefficients in K; that is, it is produced from θ and elements of K by the field operations +, −, •, / . Equivalently, L is the smallest field that contains both K and θ.
There are two different kinds of simple extensions (see § Structure of simple extensions below):
In both cases, the element θ is called a generating element or primitive element for the extension; one says also L is generated overK by θ.
For example, every finite field is a simple extension of the prime field of the same characteristic. More precisely, if p is a prime number and the field of q elements is a simple extension of degree n of In fact, L is generated as a field by any element θ that is a root of an irreducible polynomial of degree n in .
However, in the case of finite fields, the term primitive element is usually reserved for a stronger notion, an element γ that generates as a multiplicative group, so that every nonzero element of L is a power of γ, i.e. is produced from γ using only the group operation • . To distinguish these meanings, one uses the term "generator" or field primitive element for the weaker meaning, reserving "primitive element" or group primitive element for the stronger meaning. [1] (See Finite field § Multiplicative structure and Primitive element (finite field)).
Let L be a simple extension of K generated by θ. For the polynomial ring K[X], one of its main properties is the unique ring homomorphism
Two cases may occur: