Simple extension

Last updated

In field theory, a simple extension is a field extension that is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified.

Contents

The primitive element theorem provides a characterization of the finite simple extensions.

Definition

A field extension L/K is called a simple extension if there exists an element θ in L with

This means that every element of L can be expressed as a rational fraction in θ, with coefficients in K; that is, it is produced from θ and elements of K by the field operations +, −, •, / . Equivalently, L is the smallest field that contains both K and θ.

There are two different kinds of simple extensions (see Structure of simple extensions below).

The element θ may be transcendental over K, which means that it is not a root of any polynomial with coefficients in K. In this case is isomorphic to the field of rational functions

Otherwise, θ is algebraic over K; that is, θ is a root of a polynomial over K. The monic polynomial of minimal degree n, with θ as a root, is called the minimal polynomial of θ. Its degree equals the degree of the field extension, that is, the dimension of L viewed as a K-vector space. In this case, every element of can be uniquely expressed as a polynomial in θ of degree less than n, and is isomorphic to the quotient ring

In both cases, the element θ is called a generating element or primitive element for the extension; one says also L is generated overK by θ.

For example, every finite field is a simple extension of the prime field of the same characteristic. More precisely, if p is a prime number and the field of q elements is a simple extension of degree n of In fact, L is generated as a field by any element θ that is a root of an irreducible polynomial of degree n in .

However, in the case of finite fields, the term primitive element is usually reserved for a stronger notion, an element γ that generates as a multiplicative group, so that every nonzero element of L is a power of γ, i.e. is produced from γ using only the group operation • . To distinguish these meanings, one uses the term "generator" or field primitive element for the weaker meaning, reserving "primitive element" or group primitive element for the stronger meaning. [1] (See Finite field § Multiplicative structure and Primitive element (finite field)).

Structure of simple extensions

Let L be a simple extension of K generated by θ. For the polynomial ring K[X], one of its main properties is the unique ring homomorphism

Two cases may occur.

If is injective, it may be extended injectively to the field of fractions K(X) of K[X]. Since L is generated by θ, this implies that is an isomorphism from K(X) onto L. This implies that every element of L is equal to an irreducible fraction of polynomials in θ, and that two such irreducible fractions are equal if and only if one may pass from one to the other by multiplying the numerator and the denominator by the same non zero element of K.

If is not injective, let p(X) be a generator of its kernel, which is thus the minimal polynomial of θ. The image of is a subring of L, and thus an integral domain. This implies that p is an irreducible polynomial, and thus that the quotient ring is a field. As L is generated by θ, is surjective, and induces an isomorphism from onto L. This implies that every element of L is equal to a unique polynomial in θ of degree lower than the degree . That is, we have a K-basis of L given by .

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

<span class="mw-page-title-main">Root of unity</span> Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In field theory, the primitive element theorem states that every finite separable extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In field theory, a branch of mathematics, the minimal polynomial of an element α of an extension field of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the smaller field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1.

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

References

Literature