Thin set (Serre)

Last updated

In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field K, by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within K a polynomial that does not always factorise. One is also allowed to take finite unions.

Contents

Formulation

More precisely, let V be an algebraic variety over K (assumptions here are: V is an irreducible set, a quasi-projective variety, and K has characteristic zero). A type I thin set is a subset of V(K) that is not Zariski-dense. That means it lies in an algebraic set that is a finite union of algebraic varieties of dimension lower than d, the dimension of V. A type II thin set is an image of an algebraic morphism (essentially a polynomial mapping) φ, applied to the K-points of some other d-dimensional algebraic variety V, that maps essentially onto V as a ramified covering with degree e > 1. Saying this more technically, a thin set of type II is any subset of

φ(V(K))

where V satisfies the same assumptions as V and φ is generically surjective from the geometer's point of view. At the level of function fields we therefore have

[K(V): K(V)] = e > 1.

While a typical point v of V is φ(u) with u in V, from v lying in V(K) we can conclude typically only that the coordinates of u come from solving a degree e equation over K. The whole object of the theory of thin sets is then to understand that the solubility in question is a rare event. This reformulates in more geometric terms the classical Hilbert irreducibility theorem.

A thin set, in general, is a subset of a finite union of thin sets of types I and II .

The terminology thin may be justified by the fact that if A is a thin subset of the line over Q then the number of points of A of height at most H is ≪ H: the number of integral points of height at most H is , and this result is best possible. [1]

A result of S. D. Cohen, based on the large sieve method, extends this result, counting points by height function and showing, in a strong sense, that a thin set contains a low proportion of them (this is discussed at length in Serre's Lectures on the Mordell-Weil theorem). Let A be a thin set in affine n-space over Q and let N(H) denote the number of integral points of naive height at most H. Then [2]

Hilbertian fields

A Hilbertian varietyV over K is one for which V(K) is not thin: this is a birational invariant of V. [3] A Hilbertian fieldK is one for which there exists a Hilbertian variety of positive dimension over K: [3] the term was introduced by Lang in 1962. [4] If K is Hilbertian then the projective line over K is Hilbertian, so this may be taken as the definition. [5] [6]

The rational number field Q is Hilbertian, because Hilbert's irreducibility theorem has as a corollary that the projective line over Q is Hilbertian: indeed, any algebraic number field is Hilbertian, again by the Hilbert irreducibility theorem. [5] [7] More generally a finite degree extension of a Hilbertian field is Hilbertian [8] and any finitely generated infinite field is Hilbertian. [6]

There are several results on the permanence criteria of Hilbertian fields. Notably Hilbertianity is preserved under finite separable extensions [9] and abelian extensions. If N is a Galois extension of a Hilbertian field, then although N need not be Hilbertian itself, Weissauer's results asserts that any proper finite extension of N is Hilbertian. The most general result in this direction is Haran's diamond theorem. A discussion on these results and more appears in Fried-Jarden's Field Arithmetic.

Being Hilbertian is at the other end of the scale from being algebraically closed: the complex numbers have all sets thin, for example. They, with the other local fields (real numbers, p-adic numbers) are not Hilbertian. [5]

WWA property

The WWA property (weak 'weak approximation', sic) for a variety V over a number field is weak approximation (cf. approximation in algebraic groups), for finite sets of places of K avoiding some given finite set. For example take K = Q: it is required that V(Q) be dense in

Π V(Qp)

for all products over finite sets of prime numbers p, not including any of some set {p1, ..., pM} given once and for all. Ekedahl has proved that WWA for V implies V is Hilbertian. [10] In fact Colliot-Thélène conjectures WWA holds for any unirational variety, which is therefore a stronger statement. This conjecture would imply a positive answer to the inverse Galois problem. [10]

Related Research Articles

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

In mathematics, a global field is one of two types of fields which are characterized using valuations. There are two kinds of global fields:

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.

In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In algebra, a field k is perfect if any one of the following equivalent conditions holds:

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers . This problem, first posed in the early 19th century, is unsolved.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

In mathematics, a field F is called quasi-algebraically closed if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper. The idea itself is attributed to Lang's advisor Emil Artin.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In mathematics, a field is pseudo algebraically closed if it satisfies certain properties which hold for algebraically closed fields. The concept was introduced by James Ax in 1967.

In mathematics, the field of definition of an algebraic variety V is essentially the smallest field to which the coefficients of the polynomials defining V can belong. Given polynomials, with coefficients in a field K, it may not be obvious whether there is a smaller field k, and other polynomials defined over k, which still define V.

In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a field and its absolute Galois group. It is an interdisciplinary subject as it uses tools from algebraic number theory, arithmetic geometry, algebraic geometry, model theory, the theory of finite groups and of profinite groups.

In mathematics, the Haran diamond theorem gives a general sufficient condition for a separable extension of a Hilbertian field to be Hilbertian.

In mathematics, the Hasse invariant of an algebra is an invariant attached to a Brauer class of algebras over a field. The concept is named after Helmut Hasse. The invariant plays a role in local class field theory.

<span class="mw-page-title-main">Moshe Jarden</span> Israeli mathematician

Moshe Jarden is an Israeli mathematician, specialist in field arithmetic.

References

  1. Serre (1992) p.26
  2. Serre (1992) p.27
  3. 1 2 Serre (1992) p.19
  4. Schinzel (2000) p.312
  5. 1 2 3 Serre (1992) p.20
  6. 1 2 Schinzel (2000) p.298
  7. Lang (1997) p.41
  8. Serre (1992) p.21
  9. Fried & Jarden (2008) p.224
  10. 1 2 Serre (1992) p.29