Height function

Last updated

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. [1]

Contents

For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g. 7 for the coordinates (3/7, 1/2)), but in a logarithmic scale.

Significance

Height functions allow mathematicians to count objects, such as rational points, that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. [2] In this sense, height functions can be used to prove asymptotic results such as Baker's theorem in transcendental number theory which was proved by AlanBaker  ( 1966 , 1967a , 1967b ).

In other cases, height functions can distinguish some objects based on their complexity. For instance, the subspace theorem proved by Wolfgang M.Schmidt  ( 1972 ) demonstrates that points of small height (i.e. small complexity) in projective space lie in a finite number of hyperplanes and generalizes Siegel's theorem on integral points and solution of the S-unit equation. [3]

Height functions were crucial to the proofs of the Mordell–Weil theorem and Faltings's theorem by Weil  ( 1929 ) and Faltings  ( 1983 ) respectively. Several outstanding unsolved problems about the heights of rational points on algebraic varieties, such as the Manin conjecture and Vojta's conjecture, have far-reaching implications for problems in Diophantine approximation, Diophantine equations, arithmetic geometry, and mathematical logic. [4] [5]

History

An early form of height function was proposed by Giambattista Benedetti (c. 1563), who argued that the consonance of a musical interval could be measured by the product of its numerator and denominator (in reduced form); see Giambattista Benedetti § Music.[ citation needed ]

Heights in Diophantine geometry were initially developed by André Weil and Douglas Northcott beginning in the 1920s. [6] Innovations in 1960s were the Néron–Tate height and the realization that heights were linked to projective representations in much the same way that ample line bundles are in other parts of algebraic geometry. In the 1970s, Suren Arakelov developed Arakelov heights in Arakelov theory. [7] In 1983, Faltings developed his theory of Faltings heights in his proof of Faltings's theorem. [8]

Height functions in Diophantine geometry

Naive height

Classical or naive height is defined in terms of ordinary absolute value on homogeneous coordinates. It is typically a logarithmic scale and therefore can be viewed as being proportional to the "algebraic complexity" or number of bits needed to store a point. [2] It is typically defined to be the logarithm of the maximum absolute value of the vector of coprime integers obtained by multiplying through by a lowest common denominator. This may be used to define height on a point in projective space over Q, or of a polynomial, regarded as a vector of coefficients, or of an algebraic number, from the height of its minimal polynomial. [9]

The naive height of a rational number x = p/q (in lowest terms) is

Therefore, the naive multiplicative and logarithmic heights of 4/10 are 5 and log(5), for example.

The naive height H of an elliptic curve E given by y2 = x3 + Ax + B is defined to be H(E) = log max(4|A|3, 27|B|2). [12]

Néron–Tate height

The Néron–Tate height, or canonical height, is a quadratic form on the Mordell–Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron, who first defined it as a sum of local heights, [13] and John Tate, who defined it globally in an unpublished work. [14]

Weil height

The Weil height is defined on a projective variety X over a number field K equipped with a line bundle L on X. Given a very ample line bundle L0 on X, one may define a height function using the naive height function h. Since L0' is very ample, its complete linear system gives a map ϕ from X to projective space. Then for all points p on X, define [15] [16]

One may write an arbitrary line bundle L on X as the difference of two very ample line bundles L1 and L2 on X, up to Serre's twisting sheaf O(1), so one may define the Weil height hL on X with respect to L via (up to O(1)). [15] [16]

Arakelov height

The Arakelov height on a projective space over the field of algebraic numbers is a global height function with local contributions coming from Fubini–Study metrics on the Archimedean fields and the usual metric on the non-Archimedean fields. [17] [18] It is the usual Weil height equipped with a different metric. [19]

Faltings height

The Faltings height of an abelian variety defined over a number field is a measure of its arithmetic complexity. It is defined in terms of the height of a metrized line bundle. It was introduced by Faltings  ( 1983 ) in his proof of the Mordell conjecture.

Height functions in algebra

Height of a polynomial

For a polynomial P of degree n given by

the heightH(P) is defined to be the maximum of the magnitudes of its coefficients: [20]

One could similarly define the lengthL(P) as the sum of the magnitudes of the coefficients:

Relation to Mahler measure

The Mahler measure M(P) of P is also a measure of the complexity of P. [21] The three functions H(P), L(P) and M(P) are related by the inequalities

where is the binomial coefficient.

Height functions in automorphic forms

One of the conditions in the definition of an automorphic form on the general linear group of an adelic algebraic group is moderate growth, which is an asymptotic condition on the growth of a height function on the general linear group viewed as an affine variety. [22]

Other height functions

The height of an irreducible rational number x = p/q, q > 0 is (this function is used for constructing a bijection between and ). [23]

See also

Related Research Articles

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more unknowns, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

<span class="mw-page-title-main">Number theory</span> Mathematics of integer properties

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers or defined as generalizations of the integers.

<span class="mw-page-title-main">Faltings's theorem</span> Curves of genus > 1 over the rationals have only finitely many rational points

In arithmetic geometry, the Mordell conjecture is the conjecture made by Louis Mordell that a curve of genus greater than 1 over the field Q of rational numbers has only finitely many rational points. In 1983 it was proved by Gerd Faltings, and is now known as Faltings's theorem. The conjecture was later generalized by replacing Q by any number field.

<span class="mw-page-title-main">Geometry of numbers</span>

Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in and the study of these lattices provides fundamental information on algebraic numbers. The geometry of numbers was initiated by Hermann Minkowski (1910).

<span class="mw-page-title-main">Diophantine approximation</span> Rational-number approximation of a real number

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

In mathematics, a global field is one of two type of fields which are characterized using valuations. There are two kinds of global fields:

In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures. Most of these can be posed for an abelian variety A over a number field K; or more generally.

<span class="mw-page-title-main">Diophantine geometry</span> Mathematics of varieties with integer coordinates

In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations.

In mathematics, Roth's theorem is a fundamental result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that algebraic numbers cannot have many rational number approximations that are 'very good'. Over half a century, the meaning of very good here was refined by a number of mathematicians, starting with Joseph Liouville in 1844 and continuing with work of Axel Thue (1909), Carl Ludwig Siegel (1921), Freeman Dyson (1947), and Klaus Roth (1955).

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In arithmetic geometry, the Bombieri–Lang conjecture is an unsolved problem conjectured by Enrico Bombieri and Serge Lang about the Zariski density of the set of rational points of an algebraic variety of general type.

In mathematics, Siegel's theorem on integral points states that for a smooth algebraic curve C of genus g defined over a number field K, presented in affine space in a given coordinate system, there are only finitely many points on C with coordinates in the ring of integers O of K, provided g > 0.

In mathematics, the subspace theorem says that points of small height in projective space lie in a finite number of hyperplanes. It is a result obtained by Wolfgang M. Schmidt (1972).

In number theory, the Néron–Tate height is a quadratic form on the Mordell–Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron and John Tate.

In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

<span class="mw-page-title-main">Lucien Szpiro</span> French mathematician (1941–2020)

Lucien Serge Szpiro was a French mathematician known for his work in number theory, arithmetic geometry, and commutative algebra. He formulated Szpiro's conjecture and was a Distinguished Professor at the CUNY Graduate Center and an emeritus Director of Research at the CNRS.

In mathematics, an arithmetic surface over a Dedekind domain R with fraction field is a geometric object having one conventional dimension, and one other dimension provided by the infinitude of the primes. When R is the ring of integers Z, this intuition depends on the prime ideal spectrum Spec(Z) being seen as analogous to a line. Arithmetic surfaces arise naturally in diophantine geometry, when an algebraic curve defined over K is thought of as having reductions over the fields R/P, where P is a prime ideal of R, for almost all P; and are helpful in specifying what should happen about the process of reducing to R/P when the most naive way fails to make sense.

In mathematics, Vojta's conjecture is a conjecture introduced by Paul Vojta (1987) about heights of points on algebraic varieties over number fields. The conjecture was motivated by an analogy between diophantine approximation and Nevanlinna theory in complex analysis. It implies many other conjectures in Diophantine approximation, Diophantine equations, arithmetic geometry, and mathematical logic.

References

  1. Lang  ( 1997 ,pp. 43–67)
  2. 1 2 Bombieri andGubler ( 2006 ,pp. 15–21)
  3. Bombieri andGubler ( 2006 ,pp. 176–230)
  4. Vojta  ( 1987 )
  5. Faltings  ( 1991 )
  6. Weil  ( 1929 )
  7. Lang  ( 1988 )
  8. Faltings  ( 1983 )
  9. Baker and Wüstholz  ( 2007 ,p. 3)
  10. planetmath: height function
  11. mathoverflow question: average-height-of-rational-points-on-a-curve
  12. Canonical height on an elliptic curve at PlanetMath .
  13. Néron  ( 1965 )
  14. Lang  ( 1997 )
  15. 1 2 Silverman  ( 1994 ,III.10)
  16. 1 2 Bombieri andGubler ( 2006 ,Sections 2.2–2.4)
  17. Bombieri andGubler ( 2006 ,pp. 66–67)
  18. Lang  ( 1988 ,pp. 156–157)
  19. Fili,Petsche,andPritsker ( 2017 ,p. 441)
  20. Borwein  ( 2002 )
  21. Mahler  ( 1963 )
  22. Bump  ( 1998 )
  23. Kolmogorov and Fomin  ( 1957 ,p. 5)

Sources