Approximation in algebraic groups

Last updated

In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups G over global fields k.

Contents

History

Eichler (1938) proved strong approximation for some classical groups. Strong approximation was established in the 1960s and 1970s, for semisimple simply-connected algebraic groups over global fields. The results for number fields are due to Kneser  ( 1966 ) and Platonov  ( 1969 ); the function field case, over finite fields, is due to Margulis  ( 1977 ) and Prasad  ( 1977 ). In the number field case Platonov also proved a related result over local fields called the Kneser–Tits conjecture.

Formal definitions and properties

Let G be a linear algebraic group over a global field k, and A the adele ring of k. If S is a non-empty finite set of places of k, then we write AS for the ring of S-adeles and AS for the product of the completions ks, for s in the finite set S. For any choice of S, G(k) embeds in G(AS) and G(AS).

The question asked in weak approximation is whether the embedding of G(k) in G(AS) has dense image. If the group G is connected and k-rational, then it satisfies weak approximation with respect to any set S( Platonov & Rapinchuk 1994 , p.402). More generally, for any connected group G, there is a finite set T of finite places of k such that G satisfies weak approximation with respect to any set S that is disjoint with T( Platonov & Rapinchuk 1994 , p.415). In particular, if k is an algebraic number field then any group G satisfies weak approximation with respect to the set S = S of infinite places.

The question asked in strong approximation is whether the embedding of G(k) in G(AS) has dense image, or equivalently whether the set

G(k)G(AS)

is a dense subset in G(A). The main theorem of strong approximation ( Kneser 1966 , p.188) states that a non-solvable linear algebraic group G over a global field k has strong approximation for the finite set S if and only if its radical N is unipotent, G/N is simply connected, and each almost simple component H of G/N has a non-compact component Hs for some s in S (depending on H).

The proofs of strong approximation depended on the Hasse principle for algebraic groups, which for groups of type E8 was only proved several years later.

Weak approximation holds for a broader class of groups, including adjoint groups and inner forms of Chevalley groups, showing that the strong approximation property is restrictive.

See also

Related Research Articles

Faltingss theorem Curves of genus > 1 over the rationals have only finitely many rational points

In arithmetic geometry, the Mordell conjecture is the conjecture made by Louis Mordell that a curve of genus greater than 1 over the field Q of rational numbers has only finitely many rational points. In 1983 it was proved by Gerd Faltings, and is now known as Faltings's theorem. The conjecture was later generalized by replacing Q by any number field.

Abelian variety

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.

Diophantine approximation Rational-number approximation of a real number

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. This is handled by examining the equation in the completions of the rational numbers: the real numbers and the p-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers and in the p-adic numbers for each prime p.

Arithmetic group

In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.

Vladimir Petrovich Platonov (born December 1, 1939, Stayki village, Vitebsk Region, Belarusian SSR) is a Soviet, Belarusian and Russian mathematician. He is an expert in algebraic geometry and topology and member of the Russian Academy of Science.

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

Grigory Margulis Russian mathematician

Grigory Aleksandrovich Margulis is a Russian-American mathematician known for his work on lattices in Lie groups, and the introduction of methods from ergodic theory into diophantine approximation. He was awarded a Fields Medal in 1978, a Wolf Prize in Mathematics in 2005, and an Abel Prize in 2020, becoming the fifth mathematician to receive the three prizes. In 1991, he joined the faculty of Yale University, where he is currently the Erastus L. De Forest Professor of Mathematics.

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field K, by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within K a polynomial that does not always factorise. One is also allowed to take finite unions.

In abstract algebra, Ado's theorem is a theorem characterizing finite-dimensional Lie algebras.

In mathematics, the Tits alternative, named for Jacques Tits, is an important theorem about the structure of finitely generated linear groups.

Lattice (discrete subgroup)

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

In mathematics, Jean-Pierre Serre conjectured the following statement regarding the Galois cohomology of a simply connected semisimple algebraic group. Namely, he conjectured that if G is such a group over a perfect field F of cohomological dimension at most 2, then the Galois cohomology set H1(FG) is zero.

Gopal Prasad Indian-American mathematician

Gopal Prasad is an Indian-American mathematician. His research interests span the fields of Lie groups, their discrete subgroups, algebraic groups, arithmetic groups, geometry of locally symmetric spaces, and representation theory of reductive p-adic groups.

In mathematics, the Kneser–Tits problem, introduced by Tits (1964) based on a suggestion by Martin Kneser, asks whether the Whitehead group W(G,K) of a semisimple simply connected isotropic algebraic group G over a field K is trivial. The Whitehead group is the quotient of the rational points of G by the normal subgroup generated by K-subgroups isomorphic to the additive group.

In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer.

In algebraic geometry, the smooth completion of a smooth affine algebraic curve X is a complete smooth algebraic curve which contains X as an open subset. Smooth completions exist and are unique over a perfect field.

In mathematics, the trace field of a linear group is the field generated by the traces of its elements. It is mostly studied for Kleinian and Fuchsian groups, though related objects are used in the theory of lattices in Lie groups, often under the name field of definition.

References