Biquaternion algebra

Last updated

In mathematics, a biquaternion algebra is a compound of quaternion algebras over a field.

Contents

The biquaternions of William Rowan Hamilton (1844) and the related split-biquaternions and dual quaternions do not form biquaternion algebras in this sense.

Definition

Let F be a field of characteristic not equal to 2. A biquaternion algebra over F is a tensor product of two quaternion algebras. [1] [2]

A biquaternion algebra is a central simple algebra of dimension 16 and degree 4 over the base field: it has exponent (order of its Brauer class in the Brauer group of F) [3] equal to 1 or 2.

Albert's theorem

Let A = (a1,a2) and B = (b1,b2) be quaternion algebras over F.

The Albert form for A, B is

It can be regarded as the difference in the Witt ring of the ternary forms attached to the imaginary subspaces of A and B. [4] The quaternion algebras are linked if and only if the Albert form is isotropic, otherwise unlinked. [5]

Albert's theorem states that the following are equivalent:

In the case of linked algebras we can further classify the other possible structures for the tensor product in terms of the Albert form. If the form is hyperbolic, then the biquaternion algebra is isomorphic to the algebra M4(F) of 4×4 matrices over F: otherwise, it is isomorphic to the product M2(F) ⊗ D where D is a quaternion division algebra over F. [2] The Schur index of a biquaternion algebra is 4, 2 or 1 according as the Witt index of the Albert form is 0, 1 or 3. [8] [9]

Characterisation

A theorem of Albert states that every central simple algebra of degree 4 and exponent 2 is a biquaternion algebra. [8] [10]

Citations

  1. Lam 2005, p. 60.
  2. 1 2 Szymiczek 1997, p. 452.
  3. Cohn 2003, p. 208.
  4. Knus et al. 1998, p. 192.
  5. Lam 2005, p. 70.
  6. Albert 1972, pp. 65–66.
  7. Jacobson 1996, p. 77.
  8. 1 2 Lam 2005, p. 437.
  9. Knus et al. 1998, p. 236.
  10. Knus et al. 1998, p. 233.

Related Research Articles

In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics.

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebraA which is simple, and for which the center is exactly K.

In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.

In mathematics, a Severi–Brauer variety over a field K is an algebraic variety V which becomes isomorphic to a projective space over an algebraic closure of K. The varieties are associated to central simple algebras in such a way that the algebra splits over K if and only if the variety has a rational point over K. Francesco Severi studied these varieties, and they are also named after Richard Brauer because of their close relation to the Brauer group.

In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.

In mathematics, the Hasse invariant (or Hasse–Witt invariant) of a quadratic form Q over a field K takes values in the Brauer group Br(K). The name "Hasse–Witt" comes from Helmut Hasse and Ernst Witt.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In mathematics, a composition algebraA over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In mathematics, the Hilbert symbol or norm-residue symbol is a function from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × AA which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.

In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field F of characteristic not 2. For a natural number n, an n-fold Pfister form over F is a quadratic form of dimension 2n that can be written as a tensor product of quadratic forms

In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a 8-dimensional unital non-associative algebra A over F with a non-degenerate quadratic form N such that

In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.

In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible.

In mathematics, the Brauer–Wall group or super Brauer group or graded Brauer group for a field F is a group BW(F) classifying finite-dimensional graded central division algebras over the field. It was first defined by Terry Wall (1964) as a generalization of the Brauer group.

In mathematics, a linked field is a field for which the quadratic forms attached to quaternion algebras have a common property.

In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field.

References