Central simple algebra

Last updated

In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.)

Contents

For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below).

Given two central simple algebras A ~ M(n,S) and B ~ M(m,T) over the same field F, A and B are called similar (or Brauer equivalent ) if their division rings S and T are isomorphic. The set of all equivalence classes of central simple algebras over a given field F, under this equivalence relation, can be equipped with a group operation given by the tensor product of algebras. The resulting group is called the Brauer group Br(F) of the field F. [1] It is always a torsion group. [2]

Properties

then D has a tensor product decomposition
where each component Di is a central division algebra of index , and the components are uniquely determined up to isomorphism. [11]

Splitting field

We call a field E a splitting field for A over K if AE is isomorphic to a matrix ring over E. Every finite dimensional CSA has a splitting field: indeed, in the case when A is a division algebra, then a maximal subfield of A is a splitting field. In general by theorems of Wedderburn and Koethe there is a splitting field which is a separable extension of K of degree equal to the index of A, and this splitting field is isomorphic to a subfield of A. [12] [13] As an example, the field C splits the quaternion algebra H over R with

We can use the existence of the splitting field to define reduced norm and reduced trace for a CSA A. [14] Map A to a matrix ring over a splitting field and define the reduced norm and trace to be the composite of this map with determinant and trace respectively. For example, in the quaternion algebra H, the splitting above shows that the element t + xi + yj + zk has reduced norm t2 + x2 + y2 + z2 and reduced trace 2t.

The reduced norm is multiplicative and the reduced trace is additive. An element a of A is invertible if and only if its reduced norm in non-zero: hence a CSA is a division algebra if and only if the reduced norm is non-zero on the non-zero elements. [15]

Generalization

CSAs over a field K are a non-commutative analog to extension fields over K – in both cases, they have no non-trivial 2-sided ideals, and have a distinguished field in their center, though a CSA can be non-commutative and need not have inverses (need not be a division algebra). This is of particular interest in noncommutative number theory as generalizations of number fields (extensions of the rationals Q); see noncommutative number field.

See also

Related Research Articles

In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a ring in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a–1, such that aa–1 = a–1a = 1. So, (right) division may be defined as a / b = ab–1, but this notation is avoided, as one may have ab–1b–1a.

Clifford algebra Algebra based on a vector space with a quadratic form

In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford.

<span class="mw-page-title-main">Quaternion</span> Noncommutative extension of the real numbers

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative.

In algebra, the Wedderburn–Artin theorem is a classification theorem for semisimple rings and semisimple algebras. The theorem states that an (Artinian) semisimple ring R is isomorphic to a product of finitely many ni-by-ni matrix rings over division rings Di, for some integers ni, both of which are uniquely determined up to permutation of the index i. In particular, any simple left or right Artinian ring is isomorphic to an n-by-n matrix ring over a division ring D, where both n and D are uniquely determined.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.

In ring theory, a branch of mathematics, the Skolem–Noether theorem characterizes the automorphisms of simple rings. It is a fundamental result in the theory of central simple algebras.

In mathematics, a Severi–Brauer variety over a field K is an algebraic variety V which becomes isomorphic to a projective space over an algebraic closure of K. The varieties are associated to central simple algebras in such a way that the algebra splits over K if and only if the variety has a point rational over K. Francesco Severi (1932) studied these varieties, and they are also named after Richard Brauer because of their close relation to the Brauer group.

In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.

In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper (Tsen 1936); and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper (Lang 1952). The idea itself is attributed to Lang's advisor Emil Artin.

In mathematics, a composition algebraA over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies

In abstract algebra, cohomological dimension is an invariant of a group which measures the homological complexity of its representations. It has important applications in geometric group theory, topology, and algebraic number theory.

In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N such that

In algebraic number theory, the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field K which splits over every completion Kv is a matrix algebra over K. The theorem is an example of a local-global principle in algebraic number theory and leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants. It was proved independently by Richard Brauer, Helmut Hasse, and Emmy Noether and by Abraham Adrian Albert.

Noncommutative ring Algebraic structure

In mathematics, more specifically abstract algebra and ring theory, a noncommutative ring is a ring whose multiplication is not required to be commutative; that is, there may exist a and b in R with a·bb·a. These include commutative rings as a subclass. Noncommutative algebra is the study of results applying to rings that are not required to be commutative. Many important results in the field of noncommutative algebra apply to commutative rings as special cases. Some authors use the term noncommutative ring to refer to a ring that is strictly noncommutative, that is, for which there do exist a and b in R with a·bb·a.

In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible.

In mathematics, the Hasse invariant of an algebra is an invariant attached to a Brauer class of algebras over a field. The concept is named after Helmut Hasse. The invariant plays a role in local class field theory.

In mathematics, a factor system is a fundamental tool of Otto Schreier’s classical theory for group extension problem. It consists of a set of automorphisms and a binary function on a group satisfying certain condition. In fact, a factor system constitutes a realisation of the cocycles in the second cohomology group in group cohomology.

In mathematics, the Brauer–Wall group or super Brauer group or graded Brauer group for a field F is a group BW(F) classifying finite-dimensional graded central division algebras over the field. It was first defined by Terry Wall (1964) as a generalization of the Brauer group.

In mathematics, a biquaternion algebra is a compound of quaternion algebras over a field.

References

  1. Lorenz (2008) p.159
  2. Lorenz (2008) p.194
  3. Lorenz (2008) p.160
  4. Gille & Szamuely (2006) p.21
  5. Lorenz (2008) p.163
  6. Gille & Szamuely (2006) p.100
  7. Jacobson (1996) p.60
  8. Jacobson (1996) p.61
  9. Gille & Szamuely (2006) p.104
  10. Cohn, Paul M. (2003). Further Algebra and Applications. Springer-Verlag. p. 208. ISBN   1852336676.
  11. Gille & Szamuely (2006) p.105
  12. Jacobson (1996) pp.27-28
  13. Gille & Szamuely (2006) p.101
  14. Gille & Szamuely (2006) pp.37-38
  15. Gille & Szamuely (2006) p.38

Further reading