Configuration space (physics)

Last updated

In classical mechanics, the parameters that define the configuration of a system are called generalized coordinates, and the space defined by these coordinates is called the configuration space of the physical system. It is often the case that these parameters satisfy mathematical constraints, such that the set of actual configurations of the system is a manifold in the space of generalized coordinates. This manifold is called the configuration manifold of the system. Notice that this is a notion of "unrestricted" configuration space, i.e. in which different point particles may occupy the same position. In mathematics, in particular in topology, a notion of "restricted" configuration space is mostly used, in which the diagonals, representing "colliding" particles, are removed.

Contents

Example: a particle in 3D space

The position of a single particle moving in ordinary Euclidean 3-space is defined by the vector , and therefore its configuration space is . It is conventional to use the symbol for a point in configuration space; this is the convention in both the Hamiltonian formulation of classical mechanics, and in Lagrangian mechanics. The symbol is used to denote momenta; the symbol refers to velocities.

A particle might be constrained to move on a specific manifold. For example, if the particle is attached to a rigid linkage, free to swing about the origin, it is effectively constrained to lie on a sphere. Its configuration space is the subset of coordinates in that define points on the sphere . In this case, one says that the manifold is the sphere, i.e..

For n disconnected, non-interacting point particles, the configuration space is . In general, however, one is interested in the case where the particles interact: for example, they are specific locations in some assembly of gears, pulleys, rolling balls, etc. often constrained to move without slipping. In this case, the configuration space is not all of , but the subspace (submanifold) of allowable positions that the points can take.

Example: rigid body in 3D space

The set of coordinates that define the position of a reference point and the orientation of a coordinate frame attached to a rigid body in three-dimensional space form its configuration space, often denoted where represents the coordinates of the origin of the frame attached to the body, and represents the rotation matrices that define the orientation of this frame relative to a ground frame. A configuration of the rigid body is defined by six parameters, three from and three from , and is said to have six degrees of freedom.

In this case, the configuration space is six-dimensional, and a point is just a point in that space. The "location" of in that configuration space is described using generalized coordinates; thus, three of the coordinates might describe the location of the center of mass of the rigid body, while three more might be the Euler angles describing its orientation. There is no canonical choice of coordinates; one could also choose some tip or endpoint of the rigid body, instead of its center of mass; one might choose to use quaternions instead of Euler angles, and so on. However, the parameterization does not change the mechanical characteristics of the system; all of the different parameterizations ultimately describe the same (six-dimensional) manifold, the same set of possible positions and orientations.

Some parameterizations are easier to work with than others, and many important statements can be made by working in a coordinate-free fashion. Examples of coordinate-free statements are that the tangent space corresponds to the velocities of the points , while the cotangent space corresponds to momenta. (Velocities and momenta can be connected; for the most general, abstract case, this is done with the rather abstract notion of the tautological one-form.)

Example: robotic arm

For a robotic arm consisting of numerous rigid linkages, the configuration space consists of the location of each linkage (taken to be a rigid body, as in the section above), subject to the constraints of how the linkages are attached to each other, and their allowed range of motion. Thus, for linkages, one might consider the total space

except that all of the various attachments and constraints mean that not every point in this space is reachable. Thus, the configuration space is necessarily a subspace of the -rigid-body configuration space.

Note, however, that in robotics, the term configuration space can also refer to a further-reduced subset: the set of reachable positions by a robot's end-effector. [1] This definition, however, leads to complexities described by the holonomy: that is, there may be several different ways of arranging a robot arm to obtain a particular end-effector location, and it is even possible to have the robot arm move while keeping the end effector stationary. Thus, a complete description of the arm, suitable for use in kinematics, requires the specification of all of the joint positions and angles, and not just some of them.

The joint parameters of the robot are used as generalized coordinates to define configurations. The set of joint parameter values is called the joint space. A robot's forward and inverse kinematics equations define maps between configurations and end-effector positions, or between joint space and configuration space. Robot motion planning uses this mapping to find a path in joint space that provides an achievable route in the configuration space of the end-effector.

Formal definition

In classical mechanics, the configuration of a system refers to the position of all constituent point particles of the system. [2]

Phase space

The configuration space is insufficient to completely describe a mechanical system: it fails to take into account velocities. The set of velocities available to a system defines a plane tangent to the configuration manifold of the system. At a point , that tangent plane is denoted by . Momentum vectors are linear functionals of the tangent plane, known as cotangent vectors; for a point , that cotangent plane is denoted by . The set of positions and momenta of a mechanical system forms the cotangent bundle of the configuration manifold . This larger manifold is called the phase space of the system.

Quantum state space

In quantum mechanics, configuration space can be used (see for example the Mott problem), but the classical mechanics extension to phase space cannot. Instead, a rather different set of formalisms and notation are used in the analogous concept called quantum state space. The analog of a "point particle" becomes a single point in , the complex projective line, also known as the Bloch sphere. It is complex, because a quantum-mechanical wave function has a complex phase; it is projective because the wave-function is normalized to unit probability. That is, given a wave-function one is free to normalize it by the total probability , thus making it projective.

See also

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold.

<span class="mw-page-title-main">Vector field</span> Assignment of a vector to each point in a subset of Euclidean space

In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Phase space</span> Space of all possible states that a system can take

In dynamical systems theory and control theory, a phase space or state space is a space in which all possible "states" of a dynamical system or a control system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually consists of all possible values of position and momentum variables. It is the direct product of direct space and reciprocal space. The concept of phase space was developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré, and Josiah Willard Gibbs.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Tangent bundle</span> Tangent spaces of a manifold

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is,

In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.

<span class="mw-page-title-main">Rigid body</span> Physical object which does not deform when forces or moments are exerted on it

In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.

<span class="mw-page-title-main">Contact geometry</span> Branch of geometry

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is autonomous division of Newtonian mechanics.

In physics, Newtonian dynamics is the study of the dynamics of a particle or a small body according to Newton's laws of motion.

In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of classical mechanics. A closely related concept also appears in quantum mechanics; see the Stone–von Neumann theorem and canonical commutation relations for details.

In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle of a manifold In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics and Hamiltonian mechanics.

In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields.

A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector ; the dimension of the function's domain has no relation to the dimension of its range.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

Non-autonomous mechanics describe non-relativistic mechanical systems subject to time-dependent transformations. In particular, this is the case of mechanical systems whose Lagrangians and Hamiltonians depend on the time. The configuration space of non-autonomous mechanics is a fiber bundle over the time axis coordinated by .

In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space is the set of all position vectorsr in Euclidean space, and has dimensions of length; a position vector defines a point in space. Momentum space is the set of all momentum vectorsp a physical system can have; the momentum vector of a particle corresponds to its motion, with units of [mass][length][time]−1.

References

  1. John J. Craig, Introduction to Robotics: Mechanics and Control, 3rd Ed. Prentice-Hall, 2004
  2. Sussman, Gerald Jay; Wisdom, Jack; with Mayer, Meinhard E. (2001). Structure and interpretation of classical mechanics. Cambridge, Massachusetts: MIT Press. p. 9. ISBN   0262194554.