SIC-POVM

Last updated
In the Bloch sphere representation of a qubit, the states of a SIC-POVM form a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions. Regular tetrahedron inscribed in a sphere.svg
In the Bloch sphere representation of a qubit, the states of a SIC-POVM form a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

Contents

The properties of SIC-POVMs make them an interesting candidate for a "standard quantum measurement", utilized in the study of foundational quantum mechanics, most notably in QBism [ citation needed ]. SIC-POVMs have several applications in the context of quantum state tomography [1] and quantum cryptography, [2] and a possible connection has been discovered with Hilbert's twelfth problem. [3]

Definition

Unsolved problem in mathematics:
Do SIC-POVMs exist in all dimensions?

A POVM over a -dimensional Hilbert space is a set of positive-semidefinite operators that sum to the identity:

If a POVM consists of at least operators which span the space of self-adjoint operators , it is said to be an informationally complete POVM (IC-POVM). IC-POVMs consisting of exactly elements are called minimal. A set of rank-1 projectors which have equal pairwise Hilbert–Schmidt inner products, defines a minimal IC-POVM with elements called a SIC-POVM.

Properties

Symmetry

Consider an arbitrary set of rank-1 projectors such that is a POVM, and thus . Asking the projectors to have equal pairwise inner products, for all , fixes the value of . To see this, observe that implies that . Thus, This property is what makes SIC-POVMs symmetric: Any pair of elements has the same Hilbert–Schmidt inner product as any other pair.

Superoperator

In using the SIC-POVM elements, an interesting superoperator can be constructed, the likes of which map . This operator is most useful in considering the relation of SIC-POVMs with spherical t-designs. Consider the map

This operator acts on a SIC-POVM element in a way very similar to identity, in that

But since elements of a SIC-POVM can completely and uniquely determine any quantum state, this linear operator can be applied to the decomposition of any state, resulting in the ability to write the following:

where

From here, the left inverse can be calculated [4] to be , and so with the knowledge that

,

an expression for a state can be created in terms of a quasi-probability distribution, as follows:

where is the Dirac notation for the density operator viewed in the Hilbert space . This shows that the appropriate quasi-probability distribution (termed as such because it may yield negative results) representation of the state is given by

Finding SIC sets

Simplest example

For the equations that define the SIC-POVM can be solved by hand, yielding the vectors

which form the vertices of a regular tetrahedron in the Bloch sphere. The projectors that define the SIC-POVM are given by , and the elements of the SIC-POVM are thus .

For higher dimensions this is not feasible, necessitating the use of a more sophisticated approach.

Group covariance

General group covariance

A SIC-POVM is said to be group covariant if there exists a group with a -dimensional unitary representation such that

The search for SIC-POVMs can be greatly simplified by exploiting the property of group covariance. Indeed, the problem is reduced to finding a normalized fiducial vector such that

.

The SIC-POVM is then the set generated by the group action of on .

The case of Zd × Zd

So far, most SIC-POVM's have been found by considering group covariance under . [5] To construct the unitary representation, we map to , the group of unitary operators on d-dimensions. Several operators must first be introduced. Let be a basis for , then the phase operator is

where is a root of unity

and the shift operator as

Combining these two operators yields the Weyl operator which generates the Heisenberg-Weyl group. This is a unitary operator since

It can be checked that the mapping is a projective unitary representation. It also satisfies all of the properties for group covariance, [6] and is useful for numerical calculation of SIC sets.

Zauner's conjecture

Given some of the useful properties of SIC-POVMs, it would be useful if it were positively known whether such sets could be constructed in a Hilbert space of arbitrary dimension. Originally proposed in the dissertation of Zauner, [7] a conjecture about the existence of a fiducial vector for arbitrary dimensions was hypothesized.

More specifically,

For every dimension there exists a SIC-POVM whose elements are the orbit of a positive rank-one operator under the WeylHeisenberg group . What is more, commutes with an element T of the Jacobi group . The action of T on modulo the center has order three.

Utilizing the notion of group covariance on , this can be restated as [8]

For any dimension , let be an orthonormal basis for , and define

Then such that the set is a SIC-POVM.

Partial results

The proof for the existence of SIC-POVMs for arbitrary dimensions remains an open question, [6] but is an ongoing field of research in the quantum information community.

Exact expressions for SIC sets have been found for Hilbert spaces of all dimensions from through inclusive, and in some higher dimensions as large as , for 115 values of in all. [lower-alpha 1] Furthermore, using the Heisenberg group covariance on , numerical solutions have been found for all integers up through , and in some larger dimensions up to . [lower-alpha 2]

Relation to spherical t-designs

A spherical t-design is a set of vectors on the d-dimensional generalized hypersphere, such that the average value of any -order polynomial over is equal to the average of over all normalized vectors . Defining as the t-fold tensor product of the Hilbert spaces, and

as the t-fold tensor product frame operator, it can be shown that [8] a set of normalized vectors with forms a spherical t-design if and only if

It then immediately follows that every SIC-POVM is a 2-design, since

which is precisely the necessary value that satisfies the above theorem.

Relation to MUBs

In a d-dimensional Hilbert space, two distinct bases are said to be mutually unbiased if

This seems similar in nature to the symmetric property of SIC-POVMs. Wootters points out that a complete set of unbiased bases yields a geometric structure known as a finite projective plane, while a SIC-POVM (in any dimension that is a prime power) yields a finite affine plane, a type of structure whose definition is identical to that of a finite projective plane with the roles of points and lines exchanged. In this sense, the problems of SIC-POVMs and of mutually unbiased bases are dual to one another. [17]

In dimension , the analogy can be taken further: a complete set of mutually unbiased bases can be directly constructed from a SIC-POVM. [18] The 9 vectors of the SIC-POVM, together with the 12 vectors of the mutually unbiased bases, form a set that can be used in a Kochen–Specker proof. [19] However, in 6-dimensional Hilbert space, a SIC-POVM is known, but no complete set of mutually unbiased bases has yet been discovered, and it is widely believed that no such set exists. [20] [21]

See also

Notes

  1. Details of these exact solutions can be found in the literature. [7] [8] [9] [10] [11] [12] [13] [14]
  2. Like the exact solutions, the numerical solutions have been presented over the years in a series of publications by different authors. [8] [10] [15] [16] [5] [14]

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the general dynamics of a qubit. An example of classical information is a text document transmitted over the Internet.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine. It provides the theoretical basis for Hückel's rule that cyclic, planar molecules or ions with π-electrons are aromatic. It was later extended to conjugated molecules such as pyridine, pyrrole and furan that contain atoms other than carbon and hydrogen (heteroatoms). A more dramatic extension of the method to include σ-electrons, known as the extended Hückel method (EHM), was developed by Roald Hoffmann. The extended Hückel method gives some degree of quantitative accuracy for organic molecules in general and was used to provide computational justification for the Woodward–Hoffmann rules. To distinguish the original approach from Hoffmann's extension, the Hückel method is also known as the simple Hückel method (SHM).

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT transformations are represented on the Hilbert space of states.

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In differential geometry, a field of mathematics, a Courant algebroid is a vector bundle together with an inner product and a compatible bracket more general than that of a Lie algebroid.

<span class="mw-page-title-main">Mutually unbiased bases</span>

In quantum information theory, a set of bases in Hilbert space Cd are said to be mutually unbiased if when a system is prepared in an eigenstate of one of the bases, then all outcomes of the measurement with respect to the other basis are predicted to occur with an equal probability inexorably equal to 1/d.

A quantum t-design is a probability distribution over either pure quantum states or unitary operators which can duplicate properties of the probability distribution over the Haar measure for polynomials of degree t or less. Specifically, the average of any polynomial function of degree t over the design is exactly the same as the average over Haar measure. Here the Haar measure is a uniform probability distribution over all quantum states or over all unitary operators. Quantum t-designs are so called because they are analogous to t-designs in classical statistics, which arose historically in connection with the problem of design of experiments. Two particularly important types of t-designs in quantum mechanics are projective and unitary t-designs.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distanceT is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In quantum mechanics, weak measurement is a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem any quantum system is necessarily disturbed by measurement, but the amount of disturbance is described by a parameter called the measurement strength.

References

  1. Caves, Carlton M.; Fuchs, Christopher A.; Schack, Rüdiger (September 2002). "Unknown quantum states: The quantum de Finetti representation". Journal of Mathematical Physics . 43 (9): 4537–4559. arXiv: quant-ph/0104088 . Bibcode:2002JMP....43.4537C. doi:10.1063/1.1494475. ISSN   0022-2488. S2CID   17416262.
  2. Fuchs, C. A.; Sasaki, M. (2003). "Squeezing Quantum Information through a Classical Channel: Measuring the 'Quantumness' of a Set of Quantum States". Quant. Info. Comp. 3: 377–404. arXiv: quant-ph/0302092 . Bibcode:2003quant.ph..2092F.
  3. Appleby, Marcus; Flammia, Steven; McConnell, Gary; Yard, Jon (2017-04-24). "SICs and Algebraic Number Theory". Foundations of Physics . 47 (8): 1042–1059. arXiv: 1701.05200 . Bibcode:2017FoPh...47.1042A. doi:10.1007/s10701-017-0090-7. ISSN   0015-9018. S2CID   119334103.
  4. C.M. Caves (1999); http://info.phys.unm.edu/~caves/reports/infopovm.pdf
  5. 1 2 Fuchs, Christopher A.; Hoang, Michael C.; Stacey, Blake C. (2017-03-22). "The SIC Question: History and State of Play". Axioms. 6 (4): 21. arXiv: 1703.07901 . doi: 10.3390/axioms6030021 .
  6. 1 2 Appleby, D. M. (2005). "SIC-POVMs and the Extended Clifford Group". Journal of Mathematical Physics. 46 (5): 052107. arXiv: quant-ph/0412001 . Bibcode:2005JMP....46e2107A. doi:10.1063/1.1896384.
  7. 1 2 G. Zauner, Quantendesigns – Grundzüge einer nichtkommutativen Designtheorie. Dissertation, Universität Wien, 1999. http://www.gerhardzauner.at/documents/gz-quantendesigns.pdf
  8. 1 2 3 4 Renes, Joseph M.; Blume-Kohout, Robin; Scott, A. J.; Caves, Carlton M. (2004). "Symmetric Informationally Complete Quantum Measurements". Journal of Mathematical Physics. 45 (6): 2171. arXiv: quant-ph/0310075 . Bibcode:2004JMP....45.2171R. doi:10.1063/1.1737053. S2CID   17371881.
  9. A. Koldobsky and H. König, “Aspects of the Isometric Theory of Banach Spaces,” in Handbook of the Geometry of Banach Spaces, Vol. 1, edited by W. B. Johnson and J. Lindenstrauss, (North Holland, Dordrecht, 2001), pp. 899–939.
  10. 1 2 Scott, A. J.; Grassl, M. (2010). "SIC-POVMs: A new computer study". Journal of Mathematical Physics. 51 (4): 042203. arXiv: 0910.5784 . Bibcode:2010JMP....51d2203S. doi:10.1063/1.3374022. S2CID   115159554.
  11. TY Chien. ``Equiangular lines, projective symmetries and nice error frames. PhD thesis University of Auckland (2015); https://www.math.auckland.ac.nz/~waldron/Tuan/Thesis.pdf
  12. "Exact SIC fiducial vectors". University of Sydney . Retrieved 2018-03-07.
  13. Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne (2018). "Constructing exact symmetric informationally complete measurements from numerical solutions". Journal of Physics A: Mathematical and Theoretical. 51 (16): 165302. arXiv: 1703.05981 . Bibcode:2018JPhA...51p5302A. doi:10.1088/1751-8121/aab4cd. S2CID   119736328.
  14. 1 2 Stacey, Blake C. (2021). A First Course in the Sporadic SICs. Cham, Switzerland: Springer. p. 6. ISBN   978-3-030-76104-2. OCLC   1253477267.
  15. Fuchs, Christopher A.; Stacey, Blake C. (2016-12-21). "QBism: Quantum Theory as a Hero's Handbook". arXiv: 1612.07308 [quant-ph].
  16. Scott, A. J. (2017-03-11). "SICs: Extending the list of solutions". arXiv: 1703.03993 [quant-ph].
  17. Wootters, William K. (2004). "Quantum measurements and finite geometry". arXiv: quant-ph/0406032 .
  18. Stacey, Blake C. (2016). "SIC-POVMs and Compatibility among Quantum States". Mathematics. 4 (2): 36. arXiv: 1404.3774 . doi: 10.3390/math4020036 .
  19. Bengtsson, Ingemar; Blanchfield, Kate; Cabello, Adán (2012). "A Kochen–Specker inequality from a SIC". Physics Letters A . 376 (4): 374–376. arXiv: 1109.6514 . Bibcode:2012PhLA..376..374B. doi:10.1016/j.physleta.2011.12.011. S2CID   55755390.
  20. Grassl, Markus (2004). "On SIC-POVMs and MUBs in Dimension 6". arXiv: quant-ph/0406175 .
  21. Bengtsson, Ingemar; Życzkowski, Karol (2017). Geometry of quantum states : an introduction to quantum entanglement (Second ed.). Cambridge, United Kingdom: Cambridge University Press. pp. 313–354. ISBN   9781107026254. OCLC   967938939.