Quasiprobability distribution

Last updated

A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states. Indeed, quasiprobability distributions also have regions of negative probability density, counterintuitively, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, [1] and elsewhere.

Contents

Introduction

In the most general form, the dynamics of a quantum-mechanical system are determined by a master equation in Hilbert space: an equation of motion for the density operator (usually written ) of the system. The density operator is defined with respect to a complete orthonormal basis. Although it is possible to directly integrate this equation for very small systems (i.e., systems with few particles or degrees of freedom), this quickly becomes intractable for larger systems. However, it is possible to prove [2] that the density operator can always be written in a diagonal form, provided that it is with respect to an overcomplete basis. When the density operator is represented in such an overcomplete basis, then it can be written in a manner more resembling of an ordinary function, at the expense that the function has the features of a quasiprobability distribution. The evolution of the system is then completely determined by the evolution of the quasiprobability distribution function.

The coherent states, i.e. right eigenstates of the annihilation operator serve as the overcomplete basis in the construction described above. By definition, the coherent states have the following property,

They also have some further interesting properties. For example, no two coherent states are orthogonal. In fact, if |α〉 and |β〉 are a pair of coherent states, then

Note that these states are, however, correctly normalized with〈α | α〉 = 1. Owing to the completeness of the basis of Fock states, the choice of the basis of coherent states must be overcomplete. [3] Click to show an informal proof.

In the coherent states basis, however, it is always possible [2] to express the density operator in the diagonal form

where f is a representation of the phase space distribution. This function f is considered a quasiprobability density because it has the following properties:

  • (normalization)
  • If is an operator that can be expressed as a power series of the creation and annihilation operators in an ordering Ω, then its expectation value is
(optical equivalence theorem).

There exists a family of different representations, each connected to a different ordering Ω. The most popular in the general physics literature and historically first of these is the Wigner quasiprobability distribution, [4] which is related to symmetric operator ordering. In quantum optics specifically, often the operators of interest, especially the particle number operator, is naturally expressed in normal order. In that case, the corresponding representation of the phase space distribution is the Glauber–Sudarshan P representation. [5] The quasiprobabilistic nature of these phase space distributions is best understood in the P representation because of the following key statement: [6]

If the quantum system has a classical analog, e.g. a coherent state or thermal radiation, then P is non-negative everywhere like an ordinary probability distribution. If, however, the quantum system has no classical analog, e.g. an incoherent Fock state or entangled system, then P is negative somewhere or more singular than a delta function.

This sweeping statement is inoperative in other representations. For example, the Wigner function of the EPR state is positive definite but has no classical analog. [7] [8]

In addition to the representations defined above, there are many other quasiprobability distributions that arise in alternative representations of the phase space distribution. Another popular representation is the Husimi Q representation, [9] which is useful when operators are in anti-normal order. More recently, the positive P representation and a wider class of generalized P representations have been used to solve complex problems in quantum optics. These are all equivalent and interconvertible to each other, viz. Cohen's class distribution function.

Characteristic functions

Analogous to probability theory, quantum quasiprobability distributions can be written in terms of characteristic functions, from which all operator expectation values can be derived. The characteristic functions for the Wigner, Glauber P and Q distributions of an N mode system are as follows:

Here and are vectors containing the annihilation and creation operators for each mode of the system. These characteristic functions can be used to directly evaluate expectation values of operator moments. The ordering of the annihilation and creation operators in these moments is specific to the particular characteristic function. For instance, normally ordered (creation operators preceding annihilation operators) moments can be evaluated in the following way from :

In the same way, expectation values of anti-normally ordered and symmetrically ordered combinations of annihilation and creation operators can be evaluated from the characteristic functions for the Q and Wigner distributions, respectively. The quasiprobability functions themselves are defined as Fourier transforms of the above characteristic functions. That is,

Here and may be identified as coherent state amplitudes in the case of the Glauber P and Q distributions, but simply c-numbers for the Wigner function. Since differentiation in normal space becomes multiplication in Fourier space, moments can be calculated from these functions in the following way:

Here denotes symmetric ordering.

These representations are all interrelated through convolution by Gaussian functions, Weierstrass transforms,

or, using the property that convolution is associative,

It follows that

an often divergent integral, indicating P is often a distribution. Q is always broader than P for the same density matrix. [10]

For example, for a thermal state,

one has

Time evolution and operator correspondences

Since each of the above transformations from ρ to the distribution functions is linear, the equation of motion for each distribution can be obtained by performing the same transformations to . Furthermore, as any master equation which can be expressed in Lindblad form is completely described by the action of combinations of annihilation and creation operators on the density operator, it is useful to consider the effect such operations have on each of the quasiprobability functions. [11] [12]

For instance, consider the annihilation operator acting on ρ. For the characteristic function of the P distribution we have

Taking the Fourier transform with respect to to find the action corresponding action on the Glauber P function, we find

By following this procedure for each of the above distributions, the following operator correspondences can be identified:

Here κ = 0, 1/2 or 1 for P, Wigner, and Q distributions, respectively. In this way, master equations can be expressed as an equations of motion of quasiprobability functions.

Examples

Coherent state

By construction, P for a coherent state is simply a delta function:

The Wigner and Q representations follows immediately from the Gaussian convolution formulas above,

The Husimi representation can also be found using the formula above for the inner product of two coherent states,

Fock state

The P representation of a Fock state is

Since for n>0 this is more singular than a delta function, a Fock state has no classical analog. The non-classicality is less transparent as one proceeds with the Gaussian convolutions. If Ln is the nth Laguerre polynomial, W is

which can go negative but is bounded.

Q, by contrast, always remains positive and bounded,

Damped quantum harmonic oscillator

Consider the damped quantum harmonic oscillator with the following master equation,

This results in the Fokker–Planck equation,

where κ = 0, 1/2, 1 for the P, W, and Q representations, respectively.

If the system is initially in the coherent state , then this equation has the solution

See also

Related Research Articles

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:

  1. when the preparation of the systems lead to numerous pure states in the ensemble, and thus one must deal with the statistics of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment. In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Partition function (statistical mechanics)</span> Function in thermodynamics and statistical physics

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

The optical equivalence theorem in quantum optics asserts an equivalence between the expectation value of an operator in Hilbert space and the expectation value of its associated function in the phase space formulation with respect to a quasiprobability distribution. The theorem was first reported by George Sudarshan in 1963 for normally ordered operators and generalized later that decade to any ordering.

The Glauber–Sudarshan P representation is a suggested way of writing down the phase space distribution of a quantum system in the phase space formulation of quantum mechanics. The P representation is the quasiprobability distribution in which observables are expressed in normal order. In quantum optics, this representation, formally equivalent to several other representations, is sometimes preferred over such alternative representations to describe light in optical phase space, because typical optical observables, such as the particle number operator, are naturally expressed in normal order. It is named after George Sudarshan and Roy J. Glauber, who worked on the topic in 1963. Despite many useful applications in laser theory and coherence theory, the Sudarshan–Glauber P representation has the peculiarity that it is not always positive, and is not a bona-fide probability function.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Husimi Q representation</span> Computational physics simulation tool

The Husimi Q representation, introduced by Kôdi Husimi in 1940, is a quasiprobability distribution commonly used in quantum mechanics to represent the phase space distribution of a quantum state such as light in the phase space formulation. It is used in the field of quantum optics and particularly for tomographic purposes. It is also applied in the study of quantum effects in superconductors.

<span class="mw-page-title-main">Optical phase space</span> Phase space used in quantum optics

In quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.

<span class="mw-page-title-main">SIC-POVM</span> Type of measurement in quantum mechanics

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

  1. L. Cohen (1995), Time-frequency analysis: theory and applications, Prentice-Hall, Upper Saddle River, NJ, ISBN   0-13-594532-1
  2. 1 2 Sudarshan, E. C. G. (1963-04-01). "Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams". Physical Review Letters. 10 (7). American Physical Society (APS): 277–279. Bibcode:1963PhRvL..10..277S. doi:10.1103/physrevlett.10.277. ISSN   0031-9007.
  3. Klauder, John R (1960). "The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers". Annals of Physics. 11 (2). Elsevier BV: 123–168. Bibcode:1960AnPhy..11..123K. doi:10.1016/0003-4916(60)90131-7. ISSN   0003-4916.
  4. Wigner, E. (1932-06-01). "On the Quantum Correction For Thermodynamic Equilibrium". Physical Review. 40 (5). American Physical Society (APS): 749–759. Bibcode:1932PhRv...40..749W. doi:10.1103/physrev.40.749. ISSN   0031-899X.
  5. Glauber, Roy J. (1963-09-15). "Coherent and Incoherent States of the Radiation Field". Physical Review. 131 (6). American Physical Society (APS): 2766–2788. Bibcode:1963PhRv..131.2766G. doi:10.1103/physrev.131.2766. ISSN   0031-899X.
  6. Mandel, L.; Wolf, E. (1995), Optical Coherence and Quantum Optics, Cambridge UK: Cambridge University Press, ISBN   0-521-41711-2
  7. Cohen, O. (1997-11-01). "Nonlocality of the original Einstein-Podolsky-Rosen state". Physical Review A. 56 (5). American Physical Society (APS): 3484–3492. Bibcode:1997PhRvA..56.3484C. doi:10.1103/physreva.56.3484. ISSN   1050-2947.
  8. Banaszek, Konrad; Wódkiewicz, Krzysztof (1998-12-01). "Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation". Physical Review A. 58 (6): 4345–4347. arXiv: quant-ph/9806069 . Bibcode:1998PhRvA..58.4345B. doi:10.1103/physreva.58.4345. ISSN   1050-2947. S2CID   119341663.
  9. Husimi, Kôdi. Some Formal Properties of the Density Matrix. Proceedings of the Physico-Mathematical Society of Japan. Vol. 22. The Mathematical Society of Japan. pp. 264–314. doi: 10.11429/ppmsj1919.22.4_264 . ISSN   0370-1239.
  10. Wolfgang Schleich, Quantum Optics in Phase Space, (Wiley-VCH, 2001) ISBN   978-3527294350
  11. H. J. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations, Springer-Verlag (2002).
  12. C. W. Gardiner, Quantum Noise, Springer-Verlag (1991).