Negative probability

Last updated

The probability of the outcome of an experiment is never negative, although a quasiprobability distribution allows a negative probability, or quasiprobability for some events. These distributions may apply to unobservable events or conditional probabilities.

Contents

Physics and mathematics

In 1942, Paul Dirac wrote a paper "The Physical Interpretation of Quantum Mechanics" [1] where he introduced the concept of negative energies and negative probabilities:

Negative energies and probabilities should not be considered as nonsense. They are well-defined concepts mathematically, like a negative of money.

The idea of negative probabilities later received increased attention in physics and particularly in quantum mechanics. Richard Feynman argued [2] that no one objects to using negative numbers in calculations: although "minus three apples" is not a valid concept in real life, negative money is valid. Similarly he argued how negative probabilities as well as probabilities above unity possibly could be useful in probability calculations.

Negative probabilities have later been suggested to solve several problems and paradoxes. [3] Half-coins provide simple examples for negative probabilities. These strange coins were introduced in 2005 by Gábor J. Székely. [4] Half-coins have infinitely many sides numbered with 0,1,2,... and the positive even numbers are taken with negative probabilities. Two half-coins make a complete coin in the sense that if we flip two half-coins then the sum of the outcomes is 0 or 1 with probability 1/2 as if we simply flipped a fair coin.

In Convolution quotients of nonnegative definite functions [5] and Algebraic Probability Theory [6] Imre Z. Ruzsa and Gábor J. Székely proved that if a random variable X has a signed or quasi distribution where some of the probabilities are negative then one can always find two random variables, Y and Z, with ordinary (not signed / not quasi) distributions such that X, Y are independent and X + Y = Z in distribution. Thus X can always be interpreted as the "difference" of two ordinary random variables, Z and Y. If Y is interpreted as a measurement error of X and the observed value is Z then the negative regions of the distribution of X are masked / shielded by the error Y.

Another example known as the Wigner distribution in phase space, introduced by Eugene Wigner in 1932 to study quantum corrections, often leads to negative probabilities. [7] For this reason, it has later been better known as the Wigner quasiprobability distribution. In 1945, M. S. Bartlett worked out the mathematical and logical consistency of such negative valuedness. [8] The Wigner distribution function is routinely used in physics nowadays, and provides the cornerstone of phase-space quantization. Its negative features are an asset to the formalism, and often indicate quantum interference. The negative regions of the distribution are shielded from direct observation by the quantum uncertainty principle: typically, the moments of such a non-positive-semidefinite quasiprobability distribution are highly constrained, and prevent direct measurability of the negative regions of the distribution. Nevertheless, these regions contribute negatively and crucially to the expected values of observable quantities computed through such distributions.

An example: the double slit experiment

Consider a double slit experiment with photons. The two waves exiting each slit can be written as:

and

where d is the distance to the detection screen, a is the separation between the two slits, x the distance to the center of the screen, λ the wavelength and dN/dt is the number of photons emitted per unit time at the source. The amplitude of measuring a photon at distance x from the center of the screen is the sum of these two amplitudes coming out of each hole, and therefore the probability that a photon is detected at position x will be given by the square of this sum:

One can interpret this as the well-known probability rule:

In blue, the sum of the probabilities of going through holes 1 and 2; in red, minus the joint probability of going through "both holes". The interference pattern is obtained by adding the two curves. Negative joint probability 2.svg
In blue, the sum of the probabilities of going through holes 1 and 2; in red, minus the joint probability of going through "both holes". The interference pattern is obtained by adding the two curves.

whatever the last term means. Indeed, if one closes either one of the holes forcing the photon to go through the other slit, the two corresponding intensities are

and

But now, if one does interpret each of these terms in this way, the joint probability takes negative values roughly every :

However, these negative probabilities are never observed as one cannot isolate the cases in which the photon "goes through both slits", but can hint at the existence of anti-particles.

Finance

Negative probabilities have more recently been applied to mathematical finance. In quantitative finance most probabilities are not real probabilities but pseudo probabilities, often what is known as risk neutral probabilities. [9] These are not real probabilities, but theoretical "probabilities" under a series of assumptions that help simplify calculations by allowing such pseudo probabilities to be negative in certain cases as first pointed out by Espen Gaarder Haug in 2004. [10]

A rigorous mathematical definition of negative probabilities and their properties was recently derived by Mark Burgin and Gunter Meissner (2011). The authors also show how negative probabilities can be applied to financial option pricing. [9]

Engineering

The concept of negative probabilities has also been proposed for reliable facility location models where facilities are subject to negatively correlated disruption risks when facility locations, customer allocation, and backup service plans are determined simultaneously. [11] [12] Li et al. [13] proposed a virtual station structure that transforms a facility network with positively correlated disruptions into an equivalent one with added virtual supporting stations, and these virtual stations were subject to independent disruptions. This approach reduces a problem from one with correlated disruptions to one without. Xie et al. [14] later showed how negatively correlated disruptions can also be addressed by the same modeling framework, except that a virtual supporting station now may be disrupted with a “failure propensity” which

... inherits all mathematical characteristics and properties of a failure probability except that we allow it to be larger than 1...

This finding paves ways for using compact mixed-integer mathematical programs to optimally design reliable location of service facilities under site-dependent and positive/negative/mixed facility disruption correlations. [15]

The proposed “propensity” concept in Xie et al. [14] turns out to be what Feynman and others referred to as “quasi-probability.” Note that when a quasi-probability is larger than 1, then 1 minus this value gives a negative probability. In the reliable facility location context, the truly physically verifiable observation is the facility disruption states (whose probabilities are ensured to be within the conventional range [0,1]), but there is no direct information on the station disruption states or their corresponding probabilities. Hence the disruption "probabilities" of the stations, interpreted as “probabilities of imagined intermediary states,” could exceed unity, and thus are referred to as quasi-probabilities.

See also

Related Research Articles

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as its mathematical definition is not actually random nor a variable, but rather it is a function from possible outcomes in a sample space to a measurable space, often to the real numbers.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system which is entangled with another, without describing their combined state.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

<span class="mw-page-title-main">Quantum tomography</span> Reconstruction of quantum states based on measurements

Quantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state. Such a set of observations is sometimes called a quorum. The term tomography was first used in the quantum physics literature in a 1993 paper introducing experimental optical homodyne tomography.

In statistics, the delta method is a result concerning the approximate probability distribution for a function of an asymptotically normal statistical estimator from knowledge of the limiting variance of that estimator.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.

In ion trapping and atomic physics experiments, the Lamb Dicke regime is a quantum regime in which the coupling between an ion or atom's internal qubit states and its motional states is sufficiently small so that transitions that change the motional quantum number by more than one are strongly suppressed.

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

<span class="mw-page-title-main">Riemann–Silberstein vector</span>

In mathematical physics, in particular electromagnetism, the Riemann–Silberstein vector or Weber vector named after Bernhard Riemann, Heinrich Martin Weber and Ludwik Silberstein, is a complex vector that combines the electric field E and the magnetic field B.

Photon statistics is the theoretical and experimental study of the statistical distributions produced in photon counting experiments, which use photodetectors to analyze the intrinsic statistical nature of photons in a light source. In these experiments, light incident on the photodetector generates photoelectrons and a counter registers electrical pulses generating a statistical distribution of photon counts. Low intensity disparate light sources can be differentiated by the corresponding statistical distributions produced in the detection process.

Quantum counting algorithm is a quantum algorithm for efficiently counting the number of solutions for a given search problem. The algorithm is based on the quantum phase estimation algorithm and on Grover's search algorithm.

References

  1. Dirac, P. A. M. (1942). "Bakerian Lecture. The Physical Interpretation of Quantum Mechanics". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 180 (980): 1–39. Bibcode:1942RSPSA.180....1D. doi: 10.1098/rspa.1942.0023 . JSTOR   97777.
  2. Feynman, Richard P. (1987). "Negative Probability" (PDF). In Peat, F. David; Hiley, Basil (eds.). Quantum Implications: Essays in Honour of David Bohm. Routledge & Kegan Paul Ltd. pp. 235–248. ISBN   978-0415069601.
  3. Khrennikov, Andrei Y. (March 7, 2013). Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Springer Science & Business Media. ISBN   978-94-009-1483-4.
  4. Székely, G.J. (July 2005). "Half of a Coin: Negative Probabilities" (PDF). Wilmott Magazine: 66–68. Archived from the original (PDF) on 2013-11-08.
  5. Ruzsa, Imre Z.; SzéKely, Gábor J. (1983). "Convolution quotients of nonnegative functions". Monatshefte für Mathematik. 95 (3): 235–239. doi:10.1007/BF01352002. S2CID   122858460.
  6. Ruzsa, I.Z.; Székely, G.J. (1988). Algebraic Probability Theory. New York: Wiley. ISBN   0-471-91803-2.
  7. Wigner, E. (1932). "On the Quantum Correction for Thermodynamic Equilibrium". Physical Review. 40 (5): 749–759. Bibcode:1932PhRv...40..749W. doi:10.1103/PhysRev.40.749. hdl: 10338.dmlcz/141466 .
  8. Bartlett, M. S. (1945). "Negative Probability". Mathematical Proceedings of the Cambridge Philosophical Society. 41 (1): 71–73. Bibcode:1945PCPS...41...71B. doi:10.1017/S0305004100022398. S2CID   12149669.
  9. 1 2 Meissner, Gunter A.; Burgin, Dr. Mark (2011). "Negative Probabilities in Financial Modeling". SSRN Electronic Journal. Elsevier BV. doi:10.2139/ssrn.1773077. ISSN   1556-5068. S2CID   197765776.
  10. Haug, E. G. (2004). "Why so Negative to Negative Probabilities?" (PDF). Wilmott Magazine: 34–38.
  11. Snyder, L.V.; Daskin, M.S. (2005). "Reliability Models for Facility Location: The Expected Failure Cost Case". Transportation Science. 39 (3): 400–416. CiteSeerX   10.1.1.1.7162 . doi:10.1287/trsc.1040.0107.
  12. Cui, T.; Ouyang, Y.; Shen, Z-J. M. (2010). "Reliable Facility Location Design Under the Risk of Disruptions". Operations Research. 58 (4): 998–1011. CiteSeerX   10.1.1.367.3741 . doi:10.1287/opre.1090.0801. S2CID   6236098.
  13. Li, X.; Ouyang, Y.; Peng, F. (2013). "A supporting station model for reliable infrastructure location design under interdependent disruptions". Transportation Research Part E. 60: 80–93. doi:10.1016/j.tre.2013.06.005.
  14. 1 2 Xie, S.; Li, X.; Ouyang, Y. (2015). "Decomposition of general facility disruption correlations via augmentation of virtual supporting stations". Transportation Research Part B. 80: 64–81. doi:10.1016/j.trb.2015.06.006.
  15. Xie, Siyang; An, Kun; Ouyang, Yanfeng (2019). "Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities". Transportation Research Part B: Methodological. Elsevier BV. 122: 115–139. doi: 10.1016/j.trb.2019.02.001 . ISSN   0191-2615.