Krzysztof Edward Haman

Last updated
Krzysztof Edward Haman
Professor Krzysztof Haman ultrafast thermometer atmospheric measuerement campaign.jpg
Krzysztof Haman performing studies of his ultrafast thermometer.
Born (1934-01-09) January 9, 1934 (age 90)
Warsaw, Poland
NationalityPolish
Alma mater University of Warsaw
Known forModeling of dynamics of convective clouds, fog holography, solar updraft towers, chaos theory

Krzysztof Edward Haman (born January 9, 1934 in Warsaw) is a Polish atmospheric physicist, professor at the University of Warsaw, and member of the Polish Academy of Sciences [1] .

Contents

Early life and family

His grandfather was Edward Karol Haman (1856–1922), a property owner in Powiśle district of Warsaw [2] . Haman's maternal family included Anna Horodyńska(1896–1983), her maternal grandmother was Olimpia Katarzyna Podleska (1865–1957). His father, Stanisław Haman (1895–1936), had an agricultural education and specialized in horse breeding, collaborating with Professor Roman Prawocheński (1877–1926), a renowned expert in this field. Stanisław was the editor of the racing news magazine "Wiadomości Wyścigowe" and the Secretary-General of the Society for the Encouragement of Horse Breeding in Poland, which purchased the land for the Tor wyścigów konnych Służewiec (Służewiec Racecourse) in Warsaw in 1925. After World War I, Professor Prawocheński sent him to Germany, where Stanisław met his future wife. Their eldest son, Janusz Haman (1923–2019), was born in Wiesbaden. The Haman family upbringing, primarily overseen by the mother, a graduate of the Sacré Coeur Sisters' Convent in Lviv, was strict. The family spent summers in Józefów near Otwock for the health benefits for the father and winters in Zakopane, where father Haman played naval battle games with Witold Gombrowicz at the pension of Stanisław Szober, fostering intellectual creativity. Stanisław Haman died of tuberculosis at the age of 41 [3] . Janusz and Zdzisław, Krzysztof Haman's brothers, active scouts, joined the Gray Ranks in 1941 and later served in the Home Army, participating in the Warsaw Uprising, activities in which their mother was also involved. They earned their living working in car workshops in Warsaw [4] . In 1937, the family first lived at 3 Maja Avenue number 16, then at Aleja Niepodległości in Warsaw. This location was near the Mokotów Airport. After the Warsaw Uprising, their home on Aleja Niepodległości was partially destroyed by fire. Krzysztof Haman then lived temporarily with his mother near Pruszków, and later in Komorów [5] .

Academic career

Krzysztof Haman chose an academic path in geophysics. His interest in this field began in his youth with a fascination for aviation and later meteorology, especially clouds. Health limitations prevented an aviation career, steering his focus towards geophysics. He began his studies in physics before moving to mathematics, while maintaining a close connection to geophysics [4] . He completed his studies under the guidance of Karol Borsuk at the University of Warsaw's Faculty of Mathematics and Physics [4] . He earned his doctorate in 1962 based on the results of atmospheric sounding measurements in Vietnam [6] , with Teodor Kopcewicz as his supervisor. He received another degree (D.Sc.) in 1969 based on work related to the dynamics of convective clouds [7] .

Since 1998, he has been a member of the Polish Academy of Sciences. He became an associate professor in 1977 and a full professor in 1994. He has played a significant role in the development of atmospheric physics at the University of Warsaw and in Poland [8] . He was the director of the Institute of Geophysics, Faculty of Physics, University of Warsaw from 1976 to 1991 and the head of the Department of Atmospheric Physics at the Institute of Geophysics from 1975 to 2000. He took over the meteorology chair after Teodor Kopcewicz. Haman further developed university atmospheric physics in Poland, organizing and gathering around him students and collaborators [8] .

His scientific work is related to tropical meteorology, cloud microphysics, dynamics of convective clouds, and physics of stratocumulus clouds. He studied the interaction between updraft and downdraft in storm cells, developed holographic techniques for laboratory cloud research. Furthermore, his research on cooling towers is being proposed in the context of solar updraft towers as a method for cloud formation in dry areas.

He is currently an emeritus professor at the University of Warsaw. He has mentored many Polish atmospheric physicists, his students include Wojciech W. Grabowski, Szymon Malinowski, Hanna Pawłowska, and Piotr Smolarkiewicz.

Scientists from other nations work with hail experiment NCAR 1972 NHRE.pdf
Scientists from other nations work with hail experiment

Haman participated in several early international field projects including the US National Hail Research Project in 1972. [9]

Tropical meteorology

The International Geophysical Year (1957–58), considered the largest international scientific event after World War II, aimed to gather extensive observations for future synthesis of knowledge about the Earth, especially its atmosphere and climate. Krzysztof Haman participated in a "tropical" scientific expedition to Vietnam as part of this project. The research group was led by Roman Teisseyre (1929–2022), a young geophysicist at the time. The data collected during the expedition served as the basis for Haman's doctoral thesis (1962), focusing on an unusual atmospheric phenomenon he observed. He considered this work, among his numerous publications, to be his best, making a significant contribution to the field of geophysics [4] .

Dynamics of Convective Clouds

He conducted research on the structure of storm cells [10] [11] , particularly on the interactions between updraft and downdraft currents [12] , the study of downdraft in storm cells [13] , the updraft drag [14] , the formation of cumulus clouds over a localized heat source [15] , the propagation of quasi-stationary storm cells [16] [17] , and the impact of convective clouds on large-scale stratification [18] . He also focused on the exchange between filaments of saturated air with water droplets, mixed with filaments of air free from liquid water using a one-dimensional cloud model. [19]

Physics of Stratocumulus Clouds

He conducted research on the turbulent mixing in stratocumulus clouds using measurements carried out near the cloud top using high-resolution instruments which allowed for the analysis of the thermodynamics and microphysics of the processes of mixing dry air with cloud air. [20] Another article by Krzysztof Haman focuses on analyzing the transition layer between the stratocumulus cloud and the clear air above it. He states that the thickness of this layer is usually less than 20 meters. The work also discusses the phenomenon of descending currents, which can occur in this layer under certain conditions, but usually involve only a small part of the air in the mixing process. These currents typically lose their buoyancy quickly, and only some of them may penetrate deeper into the cloud, creating so-called cloud holes. [21]

Gliding

Krzysztof Haman was interested in understanding the physics of the interaction between mesoscale convection and individual convective clouds. He believed that this knowledge might have limited direct value for glider pilots but that a better understanding of atmospheric processes, especially at the scale of individual updrafts, could indirectly improve their qualifications. He observed that the mechanisms for enhancing local convective activity presented in his article could often occur in nature. He suggested that observations made by glider pilots, especially those equipped with GPS recorders, regarding local changes in cloud base heights and cloud tops, could be helpful in gaining a better understanding of these interactions [22] .

Ultrafast thermometer. Haman initiated work on this instrument in the beginning of 1990s. Professor Krzysztof Haman ultrafast thermometer atmospheric physics measuerements 01.jpg
Ultrafast thermometer. Haman initiated work on this instrument in the beginning of 1990s.

Cooling towers

Krzysztof Haman worked on issues related to applied meteorology, including the assessment of the impact of cooling towers on the atmosphere [23] [24] . The objective of this observational program was to determine the position, vertical thickness, and horizontal width of condensation trails at various distances from power plants, as well as their temperature and humidity in comparison to the surrounding environment. These data were then compared with model predictions. Measurements were conducted using an aircraft equipped with an ATP-6 thermopsychrometer. Either a two-seat motor glider SZD-46 "Ogar" or a single-engine four-seat PZL-104 "Wilga" was used for the measurements. The measurements were recorded in analog form using onboard photo-recording oscillographs. One of the results indicated significant dynamic influences of the condensation trails on the surrounding atmosphere, manifested in temperature and humidity disturbances. The mechanism of these influences seemed to be associated either with the airflow over the trail as an obstacle or with vertical waves generated by the trail, often at a considerable altitude above it [25] .

Geoengeenering

Some of his early ideas are discussed in the context of solar updraft tower and geoengeenering in the context of release of humid ground-level air from an atmospheric vortex or solar chimney at altitude could form clouds or precipitation, potentially altering local hydrology [26] .

Fog holography

He conducted laboratory measurements of cloud microphysics, including attempts to estimate droplet concentrations using holographic methods. His work aimed to verify hypotheses about the random distribution of droplets in fog [27] .

Science popularization

Krzysztof Haman has repeatedly addressed climate change issues and has been actively involved in initiatives aimed at raising public awareness in Poland in the field of atmospheric physics [28] . Haman is also a member of the scientific council of the "Climate Science" (Nauka o Klimacie) portal, whose goal is to disseminate knowledge about climate change, particularly of anthropogenic origin.

Family

During Krzysztof Haman's scientific expedition to Vietnam, his first son, Andrzej, was born. Haman has five children. Maciej is a psychologist, Jacek Haman specializes in sociology, Andrzej pursued a career in biology, the youngest daughter chose library science, and Piotr ventured into the field of business. His wife is Alina Hamanowa, who worked as an assistant professor of mathematics at the Warsaw University of Technology [4] .

Related Research Articles

<span class="mw-page-title-main">Cloud</span> Visible mass of liquid droplets or frozen crystals suspended in the atmosphere

In meteorology, a cloud is an aerosol consisting of a visible mass of miniature liquid droplets, frozen crystals, or other particles suspended in the atmosphere of a planetary body or similar space. Water or various other chemicals may compose the droplets and crystals. On Earth, clouds are formed as a result of saturation of the air when it is cooled to its dew point, or when it gains sufficient moisture from an adjacent source to raise the dew point to the ambient temperature.

<span class="mw-page-title-main">Cumulus cloud</span> Genus of clouds, low-level cloud

Cumulus clouds are clouds that have flat bases and are often described as puffy, cotton-like, or fluffy in appearance. Their name derives from the Latin cumulus, meaning "heap" or "pile". Cumulus clouds are low-level clouds, generally less than 2,000 m (6,600 ft) in altitude unless they are the more vertical cumulus congestus form. Cumulus clouds may appear by themselves, in lines, or in clusters.

<span class="mw-page-title-main">Thunderstorm</span> Type of weather with lightning and thunder

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.

<span class="mw-page-title-main">Stratocumulus cloud</span> Family class 3 cloud type

A stratocumulus cloud, occasionally called a cumulostratus, belongs to a genus-type of clouds characterized by large dark, rounded masses, usually in groups, lines, or waves, the individual elements being larger than those in altocumulus, and the whole being at a lower height, usually below 2,000 metres (6,600 ft). Weak convective currents create shallow cloud layers because of drier, stable air above preventing continued vertical development. Historically, in English, this type of cloud has been referred to as a twain cloud for being a combination of two types of clouds.

<span class="mw-page-title-main">Mesocyclone</span> Region of rotation within a powerful thunderstorm

A mesocyclone is a meso-gamma mesoscale region of rotation (vortex), typically around 2 to 6 mi in diameter, most often noticed on radar within thunderstorms. In the northern hemisphere it is usually located in the right rear flank of a supercell, or often on the eastern, or leading, flank of a high-precipitation variety of supercell. The area overlaid by a mesocyclone’s circulation may be several miles (km) wide, but substantially larger than any tornado that may develop within it, and it is within mesocyclones that intense tornadoes form.

<span class="mw-page-title-main">Squall line</span> Line of thunderstorms along or ahead of a cold front

A squall line, or more accurately a quasi-linear convective system (QLCS), is a line of thunderstorms, often forming along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front. Linear thunderstorm structures often contain heavy precipitation, hail, frequent lightning, strong straight-line winds, and occasionally tornadoes or waterspouts. Particularly strong straight-line winds can occur where the linear structure forms into the shape of a bow echo. Tornadoes can occur along waves within a line echo wave pattern (LEWP), where mesoscale low-pressure areas are present. Some bow echoes can grow to become derechos as they move swiftly across a large area. On the back edge of the rainband associated with mature squall lines, a wake low can be present, on very rare occasions associated with a heat burst.

<span class="mw-page-title-main">Cloud physics</span> Study of the physical processes in atmospheric clouds

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water, tiny crystals of ice, or both, along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

<span class="mw-page-title-main">Pileus (meteorology)</span> Small, horizontal, lenticular cloud

A pileus, also called scarf cloud or cap cloud, is a small, horizontal, lenticular cloud appearing above a cumulus or cumulonimbus cloud. Pileus clouds are often short-lived, appearing for typically only a few minutes, with the main cloud beneath them rising through convection to absorb them. Furthermore, the clouds are typically formed by drier air with a higher lifting condensation level, which often prevents vertical growth and leads to the smooth horizontal cap shape that the cloud is named for.

The Wegener–Bergeron–Findeisen process, is a process of ice crystal growth that occurs in mixed phase clouds in regions where the ambient vapor pressure falls between the saturation vapor pressure over water and the lower saturation vapor pressure over ice. This is a subsaturated environment for liquid water but a supersaturated environment for ice resulting in rapid evaporation of liquid water and rapid ice crystal growth through vapor deposition. If the number density of ice is small compared to liquid water, the ice crystals can grow large enough to fall out of the cloud, melting into rain drops if lower level temperatures are warm enough.

<span class="mw-page-title-main">Cumulus congestus cloud</span> Form of cumulus clouds

Cumulus congestus clouds, also known as towering cumulus, are a form of cumulus that can be based in the low or middle height ranges. They achieve considerable vertical development in areas of deep, moist convection. They are an intermediate stage between cumulus mediocris and cumulonimbus, sometimes producing showers of snow, rain, or ice pellets. Precipitation that evaporates before reaching the surface is virga.

<span class="mw-page-title-main">Coalescence (physics)</span> Merging of droplets, bubbles or particles

Coalescence is the process by which two or more droplets, bubbles, or particles merge during contact to form a single daughter droplet, bubble, or particle. Coalescence manifests itself from a microscopic scale in meteorology to a macroscopic scale in astrophysics. For example, it is seen in the formation of raindrops as well as planetary and star formation.

<span class="mw-page-title-main">Entrainment (meteorology)</span>

Entrainment is a phenomenon of the atmosphere which occurs when a turbulent flow captures a non-turbulent flow. It is typically used to refer to the capture of a wind flow of high moisture content, or in the case of tropical cyclones, the capture of drier air.

<span class="mw-page-title-main">Horizontal convective rolls</span>

Horizontal convective rolls, also known as horizontal roll vortices or cloud streets, are long rolls of counter-rotating air that are oriented approximately parallel to the ground in the planetary boundary layer. Although horizontal convective rolls, also known as cloud streets, have been clearly seen in satellite photographs for the last 30 years, their development is poorly understood, due to a lack of observational data. From the ground, they appear as rows of cumulus or cumulus-type clouds aligned parallel to the low-level wind. Research has shown these eddies to be significant to the vertical transport of momentum, heat, moisture, and air pollutants within the boundary layer. Cloud streets are usually more or less straight; rarely, cloud streets assume paisley patterns when the wind driving the clouds encounters an obstacle. Those cloud formations are known as von Kármán vortex streets.

<span class="mw-page-title-main">Atmospheric convection</span> Atmospheric phenomenon

Atmospheric convection is the result of a parcel-environment instability in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day expands the height of the planetary boundary layer, leading to increased winds, cumulus cloud development, and decreased surface dew points. Convection involving moist air masses leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.

Convective storm detection is the meteorological observation, and short-term prediction, of deep moist convection (DMC). DMC describes atmospheric conditions producing single or clusters of large vertical extension clouds ranging from cumulus congestus to cumulonimbus, the latter producing thunderstorms associated with lightning and thunder. Those two types of clouds can produce severe weather at the surface and aloft.

Tropical convective clouds play an important part in the Earth's climate system. Convection and release of latent heat transports energy from the surface into the upper atmosphere. Clouds have a higher albedo than the underlying ocean, which causes more incoming solar radiation to be reflected back to space. Since the tops of tropical systems are much cooler than the surface of the Earth, the presence of high convective clouds cools the climate system.

Ground-based, flight-based, or satellite-based remote sensing instruments can be used to measure properties of the planetary boundary layer, including boundary layer height, aerosols and clouds. Satellite remote sensing of the atmosphere has the advantage of being able to provide global coverage of atmospheric planetary boundary layer properties while simultaneously providing relatively high temporal sampling rates. Advancements in satellite remote sensing have provided greater vertical resolution which enables higher accuracy for planetary boundary layer measurements.

<span class="mw-page-title-main">Castellanus</span>

A castellanus is a cloud that displays at least in its upper part cumuliform protuberances having the shape of turrets that give a crenellated aspect. Some of these turrets are higher than they are wide; they have a common base and seem to be arranged in a line. The castellanus characteristic is particularly obvious when the clouds are observed from the side.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

Susan Claire van den Heever is a South African atmospheric scientist who is a professor at Colorado State University. Her research considers cloud physics and mesoscale modelling. She is a fellow of the American Meteorological Society and an editor of the Journal of the Atmospheric Sciences.

References

  1. "prof. dr hab. czł. koresp. PAN Krzysztof Edward Haman". Nauka Polska.
  2. nn (7 March 1908). "Aleje Jerozolimskie". Tygodnik Ilustrowany (in Polish). Warsaw. 77 (67).
  3. "Ś. p. Stanisław Haman". Tygodnik Ilustrowany (in Polish). Warsaw. 77 (5): 3. 2 February 1936.
  4. 1 2 3 4 5 Magdalena Bajer (June 2014). "Hamanowie". Forum Akademickie.
  5. Zdzisław Haman. Elsner, Kopernik. Archiwum Historii Mówionej.
  6. K. Haman (1962). O superdiabatycznym gradiencie temperatury w atmosferze swobodnej nad Cha-Pa (PhD thesis) (in Polish). Warsaw: University of Warsaw.
  7. K. Haman (1969). Wybrane zagadnienia dynamiki chmur konwekcyjnych i prognozy gradu (D.Sc. thesis) (in Polish). Warsaw: University of Warsaw.
  8. 1 2 K. Haman (1970). "Jeszcze o studiach geofizycznych". Przegląd Geofizyczny. XV (XXIII) (2): 131–143.
  9. "Scientists from other nations work with hail experiment". University Corporation for Atmospheric Research. 1972-06-21. Archived from the original on 2023-12-12.
  10. K. E. Haman (1978). "On the Motion of a Three-Dimensional Quasi-Steady Convective Storm in Shear". Monthly Weather Review. 106 (11): 1622–1627. doi: 10.1175/1520-0493(1978)106<1622:OTMOAT>2.0.CO;2 .
  11. Krzysztof E. Haman, Michal Niewiadomski (1980). "Cold downdrafts in cumulonimbus clouds". Tellus. 32 (6): 525–536. doi: 10.3402/tellusa.v32i6.10606 .
  12. Haman, K. (1973). "On the updraft-downdraft interaction in convective clouds". Acta Geophysica Polonica. 21 (3): 215–233.
  13. Haman, Krzysztof E.; Niewiadomski, Michal (1980). "Cold downdrafts in cumulonimbus clouds". Tellus. Wiley Online Library. 32 (6): 525–536.
  14. Haman, Krzysztof E.; Malinowski, Szymon P. (1989). "Drag effects in convective drafts". Atmospheric Research. Elsevier. 24 (1–4): 325–331.
  15. Haman, K. (1967). "On the cumulus convection above an isolated source of heat". Tellus. Wiley Online Library. 19 (1): 33–44.
  16. Haman, KE (1976). "On the airflow and motion of quasi-steady convective storms". Monthly Weather Review. 104 (1): 49–56.
  17. Haman, KE (1978). "On the motion of a three-dimensional quasi-steady convective storm in shear". Monthly Weather Review. 106 (11): 1622–1627.
  18. Haman, Krzysztof (1969). "On the influence of convective clouds on the large scale stratification". Tellus. Wiley Online Library. 21 (1): 40–53.
  19. Haman, Krzysztof E.; Pawlowska, Hanna (1995). "Dynamics of nonactive parts of convective clouds". Journal of Atmospheric Sciences. 52 (5): 519–532.
  20. Haman, Krzysztof E.; Malinowski, Szymon P.; Kurowski, Marcin J.; Gerber, Hermann; Brenguier, Jean-Louis (2007). "Small scale mixing processes at the top of a marine stratocumulus—A case study". Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography. Wiley Online Library. 133 (622): 213–226.
  21. Haman, Krzysztof E. (2009). "Simple approach to dynamics of entrainment interface layers and cloud holes in stratocumulus clouds". Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography. Wiley Online Library. 135 (638): 93–100.
  22. Haman, Krzysztof (1998). "Mesoscale Convergence and Cumulus Convection". Technical Soaring. 22 (4): 124–128.
  23. Haman, K.; Niewiadomski, M. (1975). "Wpływ chłodni kominowych na środowisko atmosferyczne". Energetyka. 10: 308–312.
  24. Haman, K.E.; Niewiadomski, M.; Smolarkiewicz, P. (1981). "Model "Alina" of power plant plumes". Acta Geophysica Polonica. 29 (4): 275–285.
  25. Haman, Krzysztof E.; Malinowski, Szymon P. (1989). "Observations of cooling tower and stack plumes and their comparison with plume model "ALINA"". Atmospheric Environment (1967). Elsevier. 23 (6): 1223–1234.
  26. Niewiadomski, Michal; Haman, Krzysztof E. (1984). "The rainfall enhancement by washout of cooling tower plumes: A numerical experiment". Atmospheric Environment. 18 (11): 2483–9. doi:10.1016/0004-6981(84)90019-2.
  27. Kozikowska, Anna; Haman, Krzysztof; Supronowicz, Jan (1984). "Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method". Quarterly Journal of the Royal Meteorological Society. Wiley Online Library. 110 (463): 65–73.
  28. Haman, Krzysztof (2008). "Natural and anthropogenic causes of climate changes". Nauka (1).