X-ray welding

Last updated

X-ray welding is an experimental welding process that uses a high powered X-ray source to provide thermal energy required to weld materials. [1]

The phrase "X-ray welding" also has an older, unrelated usage in quality control. In this context, an X-ray welder is a tradesman who consistently welds at such a high proficiency that he rarely introduces defects into the weld pool, and is able to recognize and correct defects in the weld pool, during the welding process. It is assumed (or trusted) by the Quality Control Department of a fabrication or manufacturing shop that the welding work performed by an X-ray welder would pass an X-ray inspection. For example, defects like porosity, concavities, cracks, cold laps, slag and tungsten inclusions, lack of fusion & penetration, etc., are rarely seen in a radiographic X-ray inspection of a weldment performed by an X-ray welder. [2]

With the growing use of synchrotron radiation in the welding process, the older usage of the phrase "X-Ray welding" might cause confusion; but the two terms are unlikely to be used in the same work environment because synchrotron radiation (X-Ray) welding is a remotely automated and mechanized process.

Introduction

Many advances in welding technology have resulted from the introduction of new sources of the thermal energy required for localized melting. These advances include the introduction of modern techniques such as gas tungsten arc, gas-metal arc, submerged-arc, electron beam, and laser beam welding processes. However, whilst these processes were able to improve stability, reproducibility, and accuracy of welding, they share a common limitation - the energy does not fully penetrate the material to be welded, resulting in the formation of a melt pool on the surface of the material.

To achieve welds which penetrate the full depth of the material, it is necessary to either specially design and prepare the geometry of the joint or cause vaporization of the material to such a degree that a "keyhole" is formed, allowing the heat to penetrate the joint. This is not a significant disadvantage in many types of material, as good joint strengths can be achieved, however for certain material classes such as ceramics or metal ceramic composites, such processing can significantly limit joint strength. They have great potential for use in the aerospace industry, provided a joining process that maintains the strength of the material can be found.

Until recently, sources of x-rays of sufficient intensity to cause enough volumetric heating for welding were not available. However, with the advent of third-generation synchrotron radiation sources, it is possible to achieve the power required for localized melting and even vaporization in a number of materials.

X-ray beams have been shown to have potential as welding sources for classes of materials which cannot be welded conventionally.

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal.

<span class="mw-page-title-main">Shielded metal arc welding</span> Manual arc welding process

Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.

<span class="mw-page-title-main">Electron-beam welding</span> Use of electrons to join metal parts via melting

Electron-beam welding (EBW) is a fusion welding process in which a beam of high-velocity electrons is applied to two materials to be joined. The workpieces melt and flow together as the kinetic energy of the electrons is transformed into heat upon impact. EBW is often performed under vacuum conditions to prevent dissipation of the electron beam.

Since the mid-20th century, electron-beam technology has provided the basis for a variety of novel and specialized applications in semiconductor manufacturing, microelectromechanical systems, nanoelectromechanical systems, and microscopy.

<span class="mw-page-title-main">Plastic welding</span> Welding of semi-finished plastic materials

Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat. Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials. Based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics can be classified as external and internal heating methods, as shown in Fig 1.

<span class="mw-page-title-main">X-ray tube</span> Vacuum tube that converts electrical input power into X-rays

An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.

<span class="mw-page-title-main">Laser beam welding</span> Welding technique

Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequently used in high volume and precision requiring applications using automation, as in the automotive and aeronautics industries. It is based on keyhole or penetration mode welding.

<span class="mw-page-title-main">Gas tungsten arc welding</span> Welding process

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. When helium is used, this is known as heliarc welding. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma. TIG welding is most commonly used to weld thin sections of stainless steel and non-ferrous metals such as aluminum, magnesium, and copper alloys. The process grants the operator greater control over the weld than competing processes such as shielded metal arc welding and gas metal arc welding, allowing stronger, higher-quality welds. However, TIG welding is comparatively more complex and difficult to master, and furthermore, it is significantly slower than most other welding techniques. A related process, plasma arc welding, uses a slightly different welding torch to create a more focused welding arc and as a result is often automated.

Electric resistance welding (ERW) is a welding process where metal parts in contact are permanently joined by heating them with an electric current, melting the metal at the joint. Electric resistance welding is widely used, for example, in manufacture of steel pipe and in assembly of bodies for automobiles. The electric current can be supplied to electrodes that also apply clamping pressure, or may be induced by an external magnetic field. The electric resistance welding process can be further classified by the geometry of the weld and the method of applying pressure to the joint: spot welding, seam welding, flash welding, projection welding, for example. Some factors influencing heat or welding temperatures are the proportions of the workpieces, the metal coating or the lack of coating, the electrode materials, electrode geometry, electrode pressing force, electric current and length of welding time. Small pools of molten metal are formed at the point of most electrical resistance as an electric current is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are limited to relatively thin materials.

Laser-hybrid welding is a type of welding process that combines the principles of laser beam welding and arc welding.

<span class="mw-page-title-main">Industrial radiography</span> Type of non-destructive testing

Industrial radiography is a modality of non-destructive testing that uses ionizing radiation to inspect materials and components with the objective of locating and quantifying defects and degradation in material properties that would lead to the failure of engineering structures. It plays an important role in the science and technology needed to ensure product quality and reliability. In Australia, industrial radiographic non-destructive testing is colloquially referred to as "bombing" a component with a "bomb".

Weld quality assurance is the use of technological methods and actions to test or assure the quality of welds, and secondarily to confirm the presence, location and coverage of welds. In manufacturing, welds are used to join two or more metal surfaces. Because these connections may encounter loads and fatigue during product lifetime, there is a chance they may fail if not created to proper specification.

Electron-beam machining (EBM) is a process where high-velocity electrons concentrated into a narrow beam that are directed towards the work piece, creating heat and vaporizing the material. EBM can be used for very precise cutting or boring of a wide variety of metals. Surface finish is better and kerf width is narrower than those for other thermal cutting processes.

Glidcop is a family of copper-based metal matrix composite (MMC) alloys mixed primarily with small amounts of aluminum oxide ceramic particles. It is a trademark of North American Höganäs. The name is sometimes written GlidCop or GLIDCOP.

Copper–tungsten is a mixture of copper and tungsten. As copper and tungsten are not mutually soluble, the material is composed of distinct particles of one metal dispersed in a matrix of the other one. The microstructure is therefore rather a metal matrix composite instead of a true alloy.

<span class="mw-page-title-main">Gas metal arc welding</span> Industrial welding process

Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse. Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.

Active thermography is an advanced nondestructive testing procedure, which uses a thermography measurement of a tested material thermal response after its external excitation. This principle can be used also for non-contact infrared non-destructive testing (IRNDT) of materials.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

Advanced thermoplastic composites (ACM) have a high strength fibres held together by a thermoplastic matrix. Advanced thermoplastic composites are becoming more widely used in the aerospace, marine, automotive and energy industry. This is due to the decreasing cost and superior strength to weight ratios, over metallic parts. Advance thermoplastic composite have excellent damage tolerance, corrosion resistant, high fracture toughness, high impact resistance, good fatigue resistance, low storage cost, and infinite shelf life. Thermoplastic composites also have the ability to be formed and reformed, repaired and fusion welded.

IR welding is a welding technique that uses a non-contact heating method to melt and fuse thermoplastic parts together using the energy from infrared radiation. The process was first developed in the late 1900s, but due to the high capital cost of IR equipment the process was not commonly applied in industry until prices dropped in the 1990s. IR welding typically uses a range of wavelengths from 800 to 11,000 nm on the electromagnetic spectrum to heat, melt, and fuse the interface between two plastic parts through the absorption and conversion of the IR energy into heat. Laser welding is a similar joining process that applies IR radiation at a single wavelength.

References

  1. Richard A. Rosenberg, Qing Ma, William Farrell, Mark Keefe, and Derrick C. Mancini: X-ray welding of metal-matrix composites. Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA. doi:10.1063/1.1148159.
  2. NDT Resources - Radiograph Interpretation. Archived 2014-02-16 at the Wayback Machine