Chronic radiation syndrome

Last updated

Chronic radiation syndrome (CRS) is a constellation of health effects of radiation that occur after months or years of chronic exposure to high amounts. Chronic radiation syndrome develops with a speed and severity proportional to the radiation dose received, i.e., it is a deterministic effect of exposure to ionizing radiation, unlike radiation-induced cancer. It is distinct from acute radiation syndrome in that it occurs at dose rates low enough to permit natural repair mechanisms to compete with the radiation damage during the exposure period. Dose rates high enough to cause the acute form (> ~0.1 Gy/h) are fatal long before onset of the chronic form. The lower threshold for chronic radiation syndrome is between 0.7 and 1.5 Gy, at dose rates above 0.1 Gy/yr. [1] This condition is primarily known from the Kyshtym disaster, where 66 cases were diagnosed. It has received little mention in Western literature; [1] but see the ICRP’s 2012 Statement. [2]

Radiobiology is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. Ionizing radiation is generally harmful and potentially lethal to living things but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis. Its most common impact is the induction of cancer with a latent period of years or decades after exposure. High doses can cause visually dramatic radiation burns, and/or rapid fatality through acute radiation syndrome. Controlled doses are used for medical imaging and radiotherapy.

Ionizing radiation radiation that carries enough energy to liberate electrons from atoms or molecules

Ionizing radiation is radiation that carries enough energy to detach electrons from atoms or molecules, thereby ionizing them. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds, and electromagnetic waves on the high-energy end of the electromagnetic spectrum.

Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing radiation. Additionally, the vast majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation. Ultraviolet's position on the electromagnetic spectrum is on the boundary between ionizing and non-ionizing radiation. Non-ionizing radio frequency radiation from mobile phones, electric power transmission, and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer, but the link remains unproven.

In 2013, Alexander V. Akleyev described the chronology of the clinical course of CRS while presenting at ConRad in Munich, Germany. In his presentation, he defined the latent period as being 1-5 years, and the formation coinciding with the period of maximum radiation dose. The recovery period was described as being 3-12 months after exposure ceased. He concluded that "CRS represents a systemic response of the body as a whole to the chronic total body exposure in man." [3] In 2014, Akleyev's book "Comprehensive analysis of chronic radiation syndrome, covering epidemiology, pathogenesis, pathoanatomy, diagnosis and treatment" was published by Springer. [4]

Munich Place in Bavaria, Germany

Munich is the capital and most populous city of Bavaria, the second most populous German federal state. With a population of around 1.5 million, it is the third-largest city in Germany, after Berlin and Hamburg, as well as the 12th-largest city in the European Union. The city's metropolitan region is home to 6 million people. Straddling the banks of the River Isar north of the Bavarian Alps, it is the seat of the Bavarian administrative region of Upper Bavaria, while being the most densely populated municipality in Germany. Munich is the second-largest city in the Bavarian dialect area, after the Austrian capital of Vienna.

Related Research Articles

A radiation dosimeter is a device that measures exposure to ionizing radiation. As a personal dosimeter it is normally worn by the person being monitored, and is a record of the radiation dose received. Older dosimeters, such as a film badge, require processing after use to reveal the cumulative dose received. Modern electronic personal dosimeters can give a continuous readout of cumulative dose and current dose rate, and can warn the person wearing it when a specified dose rate or a cumulative dose is exceeded.

Acute radiation syndrome health effect of radiation

Acute radiation syndrome (ARS) is a collection of health effects that are present within 24 hours of exposure to high doses of ionizing radiation. It is also called radiation poisoning, radiation sickness and radiation toxicity.

Sievert SI derived unit of equivalent dose of ionizing radiation

The sievert is a derived unit of ionizing radiation dose in the International System of Units (SI) and is a measure of the health effect of low levels of ionizing radiation on the human body. The sievert is of importance in dosimetry and radiation protection, and is named after Rolf Maximilian Sievert, a Swedish medical physicist renowned for work on radiation dose measurement and research into the biological effects of radiation.

The gray is a derived unit of ionizing radiation dose in the International System of Units (SI). It is defined as the absorption of one joule of radiation energy per kilogram of matter.

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". The IAEA also states "The accepted understanding of the term radiation protection is restricted to protection of people. Suggestions to extend the definition to include the protection of non-human species or the protection of the environment are controversial". Exposure can be from a radiation source external to the human body or due to the bodily intake of a radioactive material.

Equivalent dose is a dose quantity H representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the physical quantity absorbed dose, but also takes into account the biological effectiveness of the radiation, which is dependent on the radiation type and energy. In the SI system of units, the unit of measure is the sievert (Sv).

The roentgen equivalent man is an older, CGS unit of equivalent dose, effective dose, and committed dose which are measures of the health effect of low levels of ionizing radiation on the human body.

Absorbed dose is a measure of the energy deposited in an irradiated medium by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection, and radiology. It is also used to directly compare the effect of radiation on inanimate matter.

Radiation hormesis hypothesis on hormesis induced in response to exposure at (low level) ionizing radiation

Radiation hormesis is the hypothesis that low doses of ionizing radiation are beneficial, stimulating the activation of repair mechanisms that protect against disease, that are not activated in absence of ionizing radiation. The reserve repair mechanisms are hypothesized to be sufficiently effective when stimulated as to not only cancel the detrimental effects of ionizing radiation but also inhibit disease not related to radiation exposure. This hypothesis has captured the attention of scientists and public alike in recent years.

The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter. The material absorbing the radiation can be human tissue or silicon microchips or any other medium.

Radiation burn damage to the skin or other biological tissue caused by exposure to radiation

A radiation burn is damage to the skin or other biological tissue as an effect of radiation. The radiation types of greatest concern are thermal radiation, radio frequency energy, ultraviolet light and ionizing radiation.

The Ionising Radiations Regulations (IRR) are statutory instruments which form the main legal requirements for the use and control of ionising radiation in the United Kingdom. There have been several versions of the regulations, the current legislation was introduced in 2017 (IRR17), repealing the 1999 regulations and implementing the 2013/59/Euratom European Union directive.

Effective dose is a dose quantity in the International Commission on Radiological Protection (ICRP) system of radiological protection.

The committed dose in radiological protection is a measure of the stochastic health risk due to an intake of radioactive material into the human body. Stochastic in this context is defined as the probability of cancer induction and genetic damage, due to low levels of radiation. The SI unit of measure is the sievert.

Spaceflight radiation carcinogenesis

Astronauts are exposed to approximately 50-2,000 millisieverts (mSv) while on six-month-duration missions to the International Space Station (ISS), the Moon and beyond. The risk of cancer caused by ionizing radiation is well documented at radiation doses beginning at 50 mSv and above.

A vigorous ground-based cellular and animal model research program will help quantify the risk to the CNS from space radiation exposure on future long distance space missions and promote the development of optimized countermeasures.

References

  1. 1 2 Gusev, Igor A.; Gusʹkova, Angelina Konstantinovna; Mettler, Fred Albert (2001-03-28). Medical Management of Radiation Accidents. CRC Press. pp. 15–29. ISBN   978-0-8493-7004-5 . Retrieved 2012-06-11.
  2. ICRP (2012). ICRP Statement on Tissue Reactions / Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context. ICRP Publication 118. Ann. ICRP 41(1/2). Compare the published draft (ICRP. "Early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions and other non-cancer effects of radiation in a radiation protection context" (PDF). Archived from the original (PDF) on 3 November 2014. Retrieved 11 June 2012.) and note dose thresholds.
  3. Akleyev, Alexander (2013-05-13). "Chronic Radiation Syndrome (CRS) in residents of the Techa riverside villages" (PDF).
  4. "Chronic Radiation Syndrome | Alexander V. Akleyev | Springer". www.springer.com. Retrieved 2016-04-30.