Differential optical absorption spectroscopy

Last updated

In atmospheric chemistry, differential optical absorption spectroscopy (DOAS) is used to measure concentrations of trace gases. When combined with basic optical spectrometers such as prisms or diffraction gratings and automated, ground-based observation platforms, it presents a cheap and powerful means for the measurement of trace gas species such as ozone and nitrogen dioxide. Typical setups allow for detection limits corresponding to optical depths of 0.0001 along lightpaths of up to typically 15 km and thus allow for the detection also of weak absorbers, such as water vapour, Nitrous acid, Formaldehyde, Tetraoxygen, Iodine oxide, Bromine oxide and Chlorine oxide.

Contents

Long-path DOAS System at the Cape Verde Atmospheric Observatory (CVAO) at Sao Vicente, Cape Verde LP DOAS on Cape Verde Atmospheric Observatory, Sao Vicente , Cape Verde.JPG
Long-path DOAS System at the Cape Verde Atmospheric Observatory (CVAO) at São Vicente, Cape Verde

Theory

DOAS instruments are often divided into two main groups: passive and active ones. The active DOAS system such as longpath(LP)-systems and cavity-enhanced(CE) DOAS systems have their own light-source, whereas passive ones use the sun as their light source, e.g. MAX(Multi-axial)-DOAS. Also the moon can be used for night-time DOAS measurements, but here usually direct light measurements need to be done instead of scattered light measurements as it is the case for passive DOAS systems such as the MAX-DOAS.

The change in intensity of a beam of radiation as it travels through a medium that is not emitting is given by Beers law:

where I is the intensity of the radiation, is the density of substance, is the absorption and scattering cross section and s is the path. The subscript i denotes different species, assuming that the medium is composed of multiple substances. Several simplifications can be made. The first is to pull the absorption cross section out of the integral by assuming that it does not change significantly with the path—i.e. that it is a constant. Since the DOAS method is used to measure total column density, and not density per se, the second is to take the integral as a single parameter which we call column density:

The new, considerably simplified equation now looks like this:

If that was all there was to it, given any spectrum with sufficient resolution and spectral features, all the species could be solved for by simple algebraic inversion. Active DOAS variants can use the spectrum of the lightsource itself as reference. Unfortunately for passive measurements, where we are measuring from the bottom of the atmosphere and not the top, there is no way to determine the initial intensity, I0. Rather, what is done is to take the ratio of two measurements with different paths through the atmosphere and so determine the difference in optical depth between the two columns (Alternative a solar atlas can be employed, but this introduces another important error source to the fitting process, the instrument function itself. If the reference spectrum itself is also recorded with the same setup, these effects will eventually cancel out):

A significant component of a measured spectrum is often given by scattering and continuum components that have a smooth variation with respect to wavelength. Since these don't supply much information, the spectrum can be divided into two parts:

where is the continuum component of the spectrum and is that which remains and we shall call the differential cross-section. Therefore:

where we call the differential optical depth (DOD). Removing the continuum components and adding in the wavelength dependence produces a matrix equation with which to do the inversion:

What this means is that before performing the inversion, the continuum components from both the optical depth and from the species cross sections must be removed. This is the important “trick” of the DOAS method. In practice, this is done by simply fitting a polynomial to the spectrum and then subtracting it. Obviously, this will not produce an exact equality between the measured optical depths and those calculated with the differential cross-sections but the difference is usually small. Alternatively a common method which is applied to remove broad-band structures from the optical density are binomial high-pass filters.

Also, unless the path difference between the two measurements can be strictly determined and has some physical meaning (such as the distance of telescope and retro-reflector for a longpath-DOAS system), the retrieved quantities, will be meaningless. The typical measurement geometry will be as follows: the instrument is always pointing straight up. Measurements are taken at two different times of day: once with the sun high in the sky, and once with it near the horizon. In both cases the light is scattered into the instrument before passing through the troposphere but takes different paths through the stratosphere as shown in the figure.

To deal with this, we introduce a quantity called the airmass factor which gives the ratio between the vertical column density (the observation is performed looking straight up, with the sun at full zenith) and the slant column density (same observation angle, sun at some other angle):

where amfi is the airmass factor of species i, is the vertical column and is the slant column with the sun at zenith angle . Airmass factors can be determined by radiative transfer calculations.

Some algebra shows the vertical column density to be given by:

where is the angle at the first measurement geometry and is the angle at the second. Note that with this method, the column along the common path will be subtracted from our measurements and cannot be recovered. What this means is that, only the column density in the stratosphere can be retrieved and the lowest point of scatter between the two measurements must be determined to figure out where the column begins.

Related Research Articles

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

Bremsstrahlung Electromagnetic radiation

Bremsstrahlung, from bremsen "to brake" and Strahlung "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.

Gamma distribution Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distribution. There are two different parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ.
  2. With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the form

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

Ornstein–Uhlenbeck process

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function. Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

Shifted log-logistic distribution

The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution. It has also been called the generalized logistic distribution, but this conflicts with other uses of the term: see generalized logistic distribution.

The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer. It is used in the determination of size of crystals in the form of powder.

Gravitational lensing formalism

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

Wrapped normal distribution

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.


Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity. The model used to convert the measurements into the derived quantity is usually based on fundamental principles of a science or engineering discipline.

In statistics, identifiability is a property which a model must satisfy in order for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions.

Multivariate stable distribution

The multivariate stable distribution is a multivariate probability distribution that is a multivariate generalisation of the univariate stable distribution. The multivariate stable distribution defines linear relations between stable distribution marginals. In the same way as for the univariate case, the distribution is defined in terms of its characteristic function.

In statistics, the variance function is a smooth function which depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

Given a probit model y=1[y* > 0] where y* = x1 β + zδ + u, and u ~ N(0,1), without losing generality, z can be represented as z = x1 θ1 + x2 θ2 + v. When u is correlated with v, there will be an issue of endogeneity. This can be caused by omitted variables and measurement errors. There are also many cases where z is partially determined by y and endogeneity issue arises. For instance, in a model evaluating the effect of different patient features on their choice of whether going to hospital, y is the choice and z is the amount of the medicine a respondent took, then it is very intuitive that more often the respondent goes to hospital, it is more likely that she took more medicine, hence endogeneity issue arises. When there are endogenous explanatory variables, the estimator generated by usual estimation procedure will be inconsistent, then the corresponding estimated Average Partial Effect (APE) will be inconsistent, too.

In econometrics, the information matrix test is used to determine whether a regression model is misspecified. The test was developed by Halbert White, who observed that in a correctly specified model and under standard regularity assumptions, the Fisher information matrix can be expressed in either of two ways: as the outer product of the gradient, or as a function of the Hessian matrix of the log-likelihood function.

References