Atmospheric river

Last updated
An explanation from the National Weather Service on atmospheric rivers The science behind atmospheric rivers.jpg
An explanation from the National Weather Service on atmospheric rivers

An atmospheric river (AR) is a narrow corridor or filament of concentrated moisture in the atmosphere. Other names for this phenomenon are tropical plume, tropical connection, moisture plume, water vapor surge, and cloud band. [1] [2]

Contents

Composite satellite photos of an atmospheric river connecting Asia to North America in October 2017 NASA Atmospheric river AsiaNA2017 10 26.jpg
Composite satellite photos of an atmospheric river connecting Asia to North America in October 2017

Atmospheric rivers consist of narrow bands of enhanced water vapor transport, typically along the boundaries between large areas of divergent surface air flow, including some frontal zones in association with extratropical cyclones that form over the oceans. [3] [4] [5] [6] Pineapple Express storms are the most commonly represented and recognized type of atmospheric rivers; the name is due to the warm water vapor plumes originating over the Hawaiian tropics that follow various paths towards western North America, arriving at latitudes from California and the Pacific Northwest to British Columbia and even southeast Alaska. [7] [8] [9]

In some parts of the world, changes in atmospheric humidity and heat caused by climate change are expected to increase the intensity and frequency of extreme weather and flood events caused by atmospheric rivers. This is expected to be especially prominent in the Western United States and Canada. [10]

Description

Layered precipitable water imagery of particularly strong atmospheric rivers on 5 December 2015. The first, caused by Storm Desmond, stretched from the Caribbean to the United Kingdom; the second originated from the Philippines and crossing the Pacific Ocean extended to the west coast of North America. DesmondAtmosphericRiver.png
Layered precipitable water imagery of particularly strong atmospheric rivers on 5 December 2015. The first, caused by Storm Desmond, stretched from the Caribbean to the United Kingdom; the second originated from the Philippines and crossing the Pacific Ocean extended to the west coast of North America.

The term was originally coined by researchers Reginald Newell and Yong Zhu of the Massachusetts Institute of Technology in the early 1990s to reflect the narrowness of the moisture plumes involved. [3] [5] [11] Atmospheric rivers are typically several thousand kilometers long and only a few hundred kilometers wide, and a single one can carry a greater flux of water than Earth's largest river, the Amazon River. [4] There are typically 3–5 of these narrow plumes present within a hemisphere at any given time. These have been increasing [12] in intensity slightly over the past century.

In the current research field of atmospheric rivers, the length and width factors described above in conjunction with an integrated water vapor depth greater than 2.0 cm are used as standards to categorize atmospheric river events. [8] [13] [14] [15]

A January 2019 article in Geophysical Research Letters described them as "long, meandering plumes of water vapor often originating over the tropical oceans that bring sustained, heavy precipitation to the west coasts of North America and northern Europe." [16]

As data modeling techniques progress, integrated water vapor transport (IVT) is becoming a more common data type used to interpret atmospheric rivers. Its strength lies in its ability to show the transportation of water vapor over multiple time steps instead of a stagnant measurement of water vapor depth in a specific air column (integrated water vapor – IWV). In addition, IVT is more directly attributed to orographic precipitation, a key factor in the production of intense rainfall and subsequent flooding. [15]

Scale

The Center for Western Weather and Water Extremes (CW3E) at the Scripps Institution of Oceanography released a five-level scale in February 2019 to categorize atmospheric rivers, ranging from "weak" to "exceptional" in strength, or "beneficial" to "hazardous" in impact. The scale was developed by F. Martin Ralph, director of CW3E, who collaborated with Jonathan Rutz from the National Weather Service and other experts. [18] The scale considers both the amount of water vapor transported and the duration of the event. Atmospheric rivers receive a preliminary rank according to the 3-hour average maximum vertically integrated water vapor transport. Those lasting less than 24 hours are demoted by one rank, while those lasting longer than 48 hours are increased by one rank. [17]

Examples of different atmospheric river categories include the following historical storms: [18] [19]

  1. February 2, 2017; lasted 24 hours
  2. November 19–20, 2016; lasted 42 hours
  3. October 14–15, 2016; lasted 36 hours and produced 5–10 inches of rainfall
  4. January 8–9, 2017; lasted 36 hours and produced 14 inches of rainfall
  5. December 29, 1996 – January 2, 1997; lasted 100 hours and caused >$1 billion in damage

Typically, the Oregon coast averages one Cat 4 atmospheric river (AR) each year; Washington state averages one Cat 4 AR every two years; the San Francisco Bay Area averages one Cat 4 AR every three years; and southern California, which typically experiences one Cat 2 or Cat 3 AR each year, averages one Cat 4 AR every ten years. [19]

Usage: In practice, the AR scale can be used to refer to "conditions" without reference to the word "category", as in this excerpt from the CW3E Scripps Twitter feed: "Late-season atmospheric river to bring precipitation to the high elevations over northern California, western Oregon, and Washington this weekend, with AR 3 conditions forecast over southern Oregon." [20]

Impacts

Atmospheric rivers have a central role in the global water cycle. On any given day, atmospheric rivers account for over 90% of the global meridional (north-south) water vapor transport, yet they cover less than 10% of any given extratropical line of latitude. [4] Atmospheric rivers are also known to contribute to about 22% of total global runoff. [21]

They are also the major cause of extreme precipitation events that cause severe flooding in many mid-latitude, westerly coastal regions of the world, including the west coast of North America, [22] [23] [24] [13] Western Europe, [25] [26] [27] the west coast of North Africa, [5] the Iberian Peninsula, Iran [28] and New Zealand. [21] Equally, the absence of atmospheric rivers has been linked with the occurrence of droughts in several parts of the world, including South Africa, Spain and Portugal. [21]

United States

Water vapor imagery of the eastern Pacific Ocean from the GOES 11 satellite, showing a large atmospheric river aimed across California in December 2010. This particularly intense storm system produced as much as 26 in (660 mm) of precipitation in California and up to 17 ft (5.2 m) of snowfall in the Sierra Nevada during December 17-22, 2010. Atmospheric River GOES WV 20101220.1200.goes11.vapor.x.pacus.x.jpg
Water vapor imagery of the eastern Pacific Ocean from the GOES 11 satellite, showing a large atmospheric river aimed across California in December 2010. This particularly intense storm system produced as much as 26 in (660 mm) of precipitation in California and up to 17 ft (5.2 m) of snowfall in the Sierra Nevada during December 17–22, 2010.

The inconsistency of California's rainfall is due to the variability in strength and quantity of these storms, which can produce strenuous effects on California's water budget. The factors described above make California a perfect case study to show the importance of proper water management and prediction of these storms. [8] The significance that atmospheric rivers have for the control of coastal water budgets juxtaposed against their creation of detrimental floods can be constructed and studied by looking at California and the surrounding coastal region of the western United States. In this region atmospheric rivers have contributed 30–50% of total annual rainfall according to a 2013 study. [29] The Fourth National Climate Assessment (NCA) report, released by the U.S. Global Change Research Program (USGCRP) on November 23, 2018 [30] confirmed that along the U.S. western coast, landfalling atmospheric rivers "account for 30%–40% of precipitation and snowpack. These landfalling atmospheric rivers "are associated with severe flooding events in California and other western states." [7] [13] [31]

The USGCRP team of thirteen federal agencies—the DOA, DOC, DOD, DOE, HHS, DOI, DOS, DOT, EPA, NASA, NSF, Smithsonian Institution, and the USAID—with the assistance of "1,000 people, including 300 leading scientists, roughly half from outside the government" reported that, "As the world warms, the "landfalling atmospheric rivers on the West Coast are likely to increase" in "frequency and severity" because of "increasing evaporation and higher atmospheric water vapor levels in the atmosphere." [7] [30] [32] [33] [34]

Based on the North American Regional Reanalysis (NARR) analyses, a team led by National Oceanic and Atmospheric Administration's (NOAA) Paul J. Neiman, concluded in 2011 that landfalling ARs were "responsible for nearly all the annual peak daily flow (APDF)s in western Washington" from 1998 through 2009. [35]

According to a May 14, 2019 article in San Jose, California's The Mercury News , atmospheric rivers, "giant conveyor belts of water in the sky", cause the moisture-rich "Pineapple Express" storm systems that come from the Pacific Ocean several times annually and account for about 50 percent of California's annual precipitation. [36] [37] University of California at San Diego's Center for Western Weather and Water Extremes's director Marty Ralph, who is one of the United States' experts on atmospheric river storms and has been active in AR research for many years, said that, atmospheric rivers are more common in winter. For example, from October 2018 to spring 2019, there were 47 atmospheric rivers, 12 of which were rated strong or extreme, in Washington, Oregon and California. The rare May 2019 atmospheric rivers, classified as Category 1 and Category 2, are beneficial in terms of preventing seasonal wildfires but the "swings between heavy rain and raging wildfires" are raising questions about moving from "understanding that the climate is changing to understanding what to do about it." [38]

Atmospheric rivers have caused an average of $1.1 billion in damage annually, much of it occurring in Sonoma County, California, according to a December 2019 study by the Scripps Institution on Oceanography at UC San Diego and the US Army Corps of Engineers, [39] which analyzed data from the National Flood Insurance Program and the National Weather Service. Just twenty counties suffered almost 70% of the damage, the study found, and that one of the main factors in the scale of damage appeared to be the number of properties located in a flood plain. These counties were: [37]

  • Snohomish County, WA ($1.2 billion)
  • King County, WA ($2 billion)
  • Pierce County, WA ($900 million)
  • Lewis County, WA ($3 billion)
  • Cowlitz County WA ($500 million)
  • Columbia County, OR ($700 million)
  • Clackamas, County, OR ($900 million)
  • Washoe County, NV ($1.3 billion)
  • Placer County, CA ($800 million)
  • Sacramento County, CA ($1.7 billion)
  • Napa County, CA ($1.3 billion)
  • Sonoma County, CA ($5.2 billion)
  • Marin County, CA ($2.2 billion)
  • Santa Clara County, CA ($1 billion)
  • Monterey County, CA ($1.3 billion)
  • Los Angeles County, CA ($2.7 billion)
  • Riverside County, CA ($500 million)
  • Orange County, CA ($800 million)
  • San Diego County, CA ($800 million)
  • Maricopa County, AZ ($600 million)

Canada

According to a January 22, 2019 article in Geophysical Research Letters , the Fraser River Basin (FRB), a "snow-dominated watershed" [Note 1] in British Columbia, is exposed to landfalling ARs, originating over the tropical Pacific Ocean that bring "sustained, heavy precipitation" throughout the winter months. [16] The authors predict that based on their modelling "extreme rainfall events resulting from atmospheric rivers may lead to peak annual floods of historic proportions, and of unprecedented frequency, by the late 21st century in the Fraser River Basin." [16]

In November 2021, massive flooding in the Fraser River Basin near Vancouver was attributed to a series of atmospheric rivers and was an event roughly one-tenth of a similar average event from approximately 100 years previous. [40]

Iran

While a large body of research has shown the impacts of the atmospheric rivers on weather-related natural disasters over the western U.S. and Europe, little is known about their mechanisms and contribution to flooding in the Middle East. However, a rare atmospheric river was found responsible for the record floods of March 2019 in Iran that damaged one-third of the country's infrastructures and killed 76 people. [28]

That AR was named Dena, after the peak of the Zagros Mountains, which played a crucial role in precipitation formation. AR Dena started its long, 9000 km journey from the Atlantic Ocean and travelled across North Africa before its final landfall over the Zagros Mountains. Specific synoptic weather conditions, including tropical-extratropical interactions of the atmospheric jets, and anomalously warm sea-surface temperatures in all surrounding basins provided the necessary ingredients for formation of this AR. Water transport by AR Dena was equivalent to more than 150 times the aggregated flow of the four major rivers in the region (Tigris, Euphrates, Karun and Karkheh).

The intense rains made the 2018-2019 rainy season the wettest in the past half century, a sharp contrast with the prior year, which was the driest over the same period. Thus, this event is a compelling example of rapid dry-to-wet transitions and intensification of extremes, potentially resulting from the climate change.

Australia

In Australia, northwest cloud bands are sometimes associated with atmospheric rivers that originate in the Indian Ocean and cause heavy rainfall in northwestern, central, and southeastern parts of the country. They are more frequent when temperatures in the eastern Indian Ocean near Australia are warmer than those in the western Indian Ocean (i.e. a negative Indian Ocean Dipole). [41] [42] Atmospheric rivers also form in the waters to the east and south of Australia and are most common during the warmer months. [43]

Europe

According to an article in Geophysical Research Letters by Lavers and Villarini, 8 of the 10 highest daily precipitation records in the period 1979–2011 have been associated with atmospheric rivers events in areas of Britain, France and Norway. [44]

Satellites and sensors

According to a 2011 Eos magazine article [Note 2] by 1998, the spatiotemporal coverage of water vapor data over oceans had vastly improved through the use of "microwave remote sensing from polar-orbiting satellites", such as the special sensor microwave/imager (SSM/I). This led to greatly increased attention to the "prevalence and role" of atmospheric rivers. Prior to the use of these satellites and sensors, scientists were mainly dependent on weather balloons and other related technologies that did not adequately cover oceans. SSM/I and similar technologies provide "frequent global measurements of integrated water vapor over the Earth's oceans." [45] [46]

See also

Notes

  1. According to the Curry et al article, "Snow-dominated watersheds are bellwethers of climate change."
  2. Eos, Transactions is published weekly by the American Geophysical Union and covers topics related to earth science.

Related Research Articles

<span class="mw-page-title-main">Jet stream</span> Fast-flowing atmospheric air current

Jet streams are fast flowing, narrow, meandering air currents in the atmospheres of the Earth, Venus, Jupiter, Saturn, Uranus, and Neptune. On Earth, the main jet streams are located near the altitude of the tropopause and are westerly winds. Jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including opposite to the direction of the remainder of the jet.

<span class="mw-page-title-main">Extreme weather</span> Unusual, severe or unseasonal weather

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. They are defined as lying in the most unusual ten percent. The main types of extreme weather include heat waves, cold waves and heavy precipitation or storm events, such as tropical cyclones. The effects of extreme weather events are economic costs, loss of human lives, droughts, floods, landslides. Severe weather is a particular type of extreme weather which poses risks to life and property.

<span class="mw-page-title-main">Tropopause</span> The boundary of the atmosphere between the troposphere and stratosphere

The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.

<span class="mw-page-title-main">Precipitation</span> Product of the condensation of atmospheric water vapor that falls under gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers.

<span class="mw-page-title-main">El Niño–Southern Oscillation</span> Climate phenomenon that periodically fluctuates between three phases

El Niño–Southern Oscillation (ENSO) is a climate phenomenon that exhibits irregular quasi-periodic variation in winds and sea surface temperatures over the tropical Pacific Ocean. It affects the climate of much of the tropics and subtropics, and has links (teleconnections) to higher latitude regions of the world. The warming phase of the sea surface temperature is known as El Niño and the cooling phase as La Niña. The Southern Oscillation is the accompanying atmospheric component, which is coupled with the sea temperature change. El Niño is associated with higher than normal air sea level pressure over Indonesia, Australia and across the Indian Ocean to the Atlantic. La Niña has roughly the reverse pattern: high pressure over the central and eastern Pacific and lower pressure through much of the rest of the tropics and subtropics. The two phenomena last a year or so each and typically occur every two to seven years with varying intensity, with neutral periods of lower intensity interspersed. El Niño events can be more intense but La Niña events may repeat and last longer.

<span class="mw-page-title-main">Madden–Julian oscillation</span> Tropical atmosphere element of variability

The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s, through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.

<span class="mw-page-title-main">Extratropical cyclone</span> Type of cyclone

Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of producing anything from cloudiness and mild showers to severe gales, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth. In contrast with tropical cyclones, extratropical cyclones produce rapid changes in temperature and dew point along broad lines, called weather fronts, about the center of the cyclone.

<span class="mw-page-title-main">Tropical cyclone</span> Rapidly rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, or simply cyclone. A hurricane is a strong tropical cyclone that occurs in the Atlantic Ocean or northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean. In the Indian Ocean and South Pacific, comparable storms are referred to as "tropical cyclones". In modern times, on average around 80 to 90 named tropical cyclones form each year around the world, over half of which develop hurricane-force winds of 65 kn or more. Tropical cyclones carry heat and energy away from the tropics and transport it towards temperate latitudes, which plays an important role in regulating global climate.

<span class="mw-page-title-main">Indian Ocean Dipole</span> Climatic and oceanographic cycle affecting Southeast Asia, Australia and Africa

The Indian Ocean Dipole (IOD), also known as the Indian Niño, is an irregular oscillation of sea surface temperatures in which the western Indian Ocean becomes alternately warmer and then colder than the eastern part of the ocean.

<span class="mw-page-title-main">Floods in California</span> History of floods in California

All types of floods can occur in California, though 90 percent of them are caused by river flooding in lowland areas. Such flooding generally occurs as a result of excessive rainfall, excessive snowmelt, excessive runoff, levee failure, poor planning or built infrastructure, or a combination of these factors. Below is a list of flood events that were of significant impact to California.

<span class="mw-page-title-main">Polar amplification</span>

Polar amplification is the phenomenon that any change in the net radiation balance tends to produce a larger change in temperature near the poles than in the planetary average. This is commonly referred to as the ratio of polar warming to tropical warming. On a planet with an atmosphere that can restrict emission of longwave radiation to space, surface temperatures will be warmer than a simple planetary equilibrium temperature calculation would predict. Where the atmosphere or an extensive ocean is able to transport heat polewards, the poles will be warmer and equatorial regions cooler than their local net radiation balances would predict. The poles will experience the most cooling when the global-mean temperature is lower relative to a reference climate; alternatively, the poles will experience the greatest warming when the global-mean temperature is higher.

<span class="mw-page-title-main">North American monsoon</span> Pattern of thunderstorms and rainfall in the southwestern United States and northwestern Mexico

The North American monsoon, variously known as the Southwest monsoon, the Mexican monsoon, the New Mexican monsoon, or the Arizona monsoon is a pattern of pronounced increase in thunderstorms and rainfall over large areas of the southwestern United States and northwestern Mexico, centered roughly on the Rio Grande Valley, and typically occurring between June and mid-September. During the monsoon, thunderstorms are fueled by daytime heating and build up during the late afternoon and early evening. Typically, these storms dissipate by late night, and the next day starts out fair, with the cycle repeating daily. The monsoon typically loses its energy by mid-September when much drier conditions are reestablished over the region. Geographically, the North American monsoon precipitation region is centered over the Sierra Madre Occidental in the Mexican states of Sinaloa, Durango, Sonora and Chihuahua.

<span class="mw-page-title-main">Climate of the Philippines</span> Climatic features of the Philippines

The Philippines has five types of climates: tropical rainforest, tropical monsoon, tropical savanna, humid subtropical and oceanic characterized by relatively high temperature, oppressive humidity and plenty of rainfall. There are two seasons in the country, the wet season and the dry season, based upon the amount of rainfall. This is also dependent on location in the country as some areas experience rain all throughout the year. Based on temperature, the warmest months of the year are March through October; the winter monsoon brings cooler air from November to February. May is the warmest month, and January, the coolest.

<span class="mw-page-title-main">Rain</span> Precipitation in the form of water droplets

Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems.

<span class="mw-page-title-main">Tropical cyclones and climate change</span> Impact of climate change on tropical cyclones

Climate change can affect tropical cyclones in a variety of ways: an intensification of rainfall and wind speed, a decrease in overall frequency, an increase in the frequency of very intense storms and a poleward extension of where the cyclones reach maximum intensity are among the possible consequences of human-induced climate change. Tropical cyclones use warm, moist air as their source of energy or "fuel". As climate change is warming ocean temperatures, there is potentially more of this fuel available.

<span class="mw-page-title-main">ARkStorm</span> Proposed "megastorm" scenario in California, US

An ARkStorm is a "megastorm" proposed scenario based on repeated historical occurrences of atmospheric rivers and other major rain events first developed and published by the Multi-Hazards Demonstration Project (MHDP) of the United States Geological Survey (USGS) in 2010 and updated as ARkStorm 2.0 in 2022.

<span class="mw-page-title-main">Hurricane Joanne (1972)</span> Category 2 Pacific hurricane in 1972

Hurricane Joanne was one of four tropical cyclones to bring gale-force winds to the Southwestern United States in the 20th century. A tropical depression developed on September 30, 1972. It then moved west northwest and intensified into a hurricane on October 1. Hurricane Joanne peaked as a Category 2 hurricane, as measured by the modern Saffir-Simpson hurricane wind scale (SSHWS), October 2. Joanne then slowed and began to re-curve. Joanne made landfall along the northern portion of the Baja California Peninsula as a tropical storm. The tropical storm moved inland over Sonora on October 6 and was believed to have survived into Arizona as a tropical storm. In Arizona, many roads were closed and some water rescues had to be performed due to a prolonged period of heavy rains. One person was reportedly killed while another was electrocuted. A few weeks after the hurricane, Arizona would sustain additional flooding and eight additional deaths.

<span class="mw-page-title-main">Ridiculously Resilient Ridge</span> Extremely persistent anticyclone over the Pacific Ocean

The "Ridiculously Resilient Ridge", sometimes shortened to "Triple R" or "RRR", is the nickname given to a persistent anticyclone that occurred over the far northeastern Pacific Ocean, contributing to the 2011–2017 California drought. The "Ridiculously Resilient Ridge" nickname was originally coined in December 2013 by Daniel Swain on the Weather West Blog, but has since been used widely in popular media as well as in peer-reviewed scientific literature.

Caroline C. Ummenhofer is a physical oceanographer at the Woods Hole Oceanographic Institution where she studies extreme weather events with a particular focus on the Indian Ocean. Ummenhofer makes an effort to connect her discoveries about predicting extreme weather events and precipitation to helping the nations affected.

<span class="mw-page-title-main">Effects of climate change on the water cycle</span>

The effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle. This effect has been observed since at least 1980. One example is the intensification of heavy precipitation events. This has important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, atmosphere and land surface. The water cycle is essential to life on Earth and plays a large role in the global climate and the ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.

References

  1. "Atmospheric River Information Page". NOAA Earth System Research Laboratory.
  2. "Atmospheric rivers form in both the Indian and Pacific Oceans, bringing rain from the tropics to the south". ABC news. 11 August 2020. Retrieved 11 August 2020.
  3. 1 2 Zhu, Yong; Reginald E. Newell (1994). "Atmospheric rivers and bombs" (PDF). Geophysical Research Letters . 21 (18): 1999–2002. Bibcode:1994GeoRL..21.1999Z. doi:10.1029/94GL01710. Archived from the original (PDF) on 2010-06-10.
  4. 1 2 3 Zhu, Yong; Reginald E. Newell (1998). "A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers". Monthly Weather Review. 126 (3): 725–735. Bibcode:1998MWRv..126..725Z. doi: 10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 . ISSN   1520-0493.
  5. 1 2 3 Kerr, Richard A. (28 July 2006). "Rivers in the Sky Are Flooding The World With Tropical Waters" (PDF). Science. 313 (5786): 435. doi:10.1126/science.313.5786.435. PMID   16873624. S2CID   13209226. Archived from the original (PDF) on 29 June 2010. Retrieved 14 December 2010.
  6. White, Allen B.; et al. (2009-10-08). The NOAA coastal atmospheric river observatory. 34th Conference on Radar Meteorology.
  7. 1 2 3 Dettinger, Michael (2011-06-01). "Climate Change, Atmospheric Rivers, and Floods in California – A Multimodel Analysis of Storm Frequency and Magnitude Changes1". JAWRA Journal of the American Water Resources Association. 47 (3): 514–523. Bibcode:2011JAWRA..47..514D. doi:10.1111/j.1752-1688.2011.00546.x. ISSN   1752-1688. S2CID   4691998.
  8. 1 2 3 Dettinger, Michael D.; Ralph, Fred Martin; Das, Tapash; Neiman, Paul J.; Cayan, Daniel R. (2011-03-24). "Atmospheric Rivers, Floods and the Water Resources of California". Water. 3 (2): 445–478. doi: 10.3390/w3020445 . hdl: 10535/7155 .
  9. Tan, Yaheng; Yang, Song; Zwiers, Francis; Wang, Ziqian; Sun, Qiaohong (2022-02-01). "Moisture budget analysis of extreme precipitation associated with different types of atmospheric rivers over western North America". Climate Dynamics. 58 (3): 793–809. Bibcode:2022ClDy...58..793T. doi:10.1007/s00382-021-05933-3. ISSN   1432-0894. S2CID   237218999.
  10. Corringham, Thomas W.; McCarthy, James; Shulgina, Tamara; Gershunov, Alexander; Cayan, Daniel R.; Ralph, F. Martin (2022-08-12). "Climate change contributions to future atmospheric river flood damages in the western United States". Scientific Reports. 12 (1): 13747. Bibcode:2022NatSR..1213747C. doi: 10.1038/s41598-022-15474-2 . ISSN   2045-2322. PMC   9374734 . PMID   35961991.
  11. Newell, Reginald E.; Nicholas E. Newell; Yong Zhu; Courtney Scott (1992). "Tropospheric rivers? – A pilot study". Geophys. Res. Lett. 19 (24): 2401–2404. Bibcode:1992GeoRL..19.2401N. doi:10.1029/92GL02916.
  12. "Atmospheric rivers, part 2". ABC Radio National. 2022-05-24. Retrieved 2022-06-22.
  13. 1 2 3 Ralph, F. Martin; et al. (2006). "Flooding on California's Russian River: Role of atmospheric rivers" (PDF). Geophys. Res. Lett. 33 (13): L13801. Bibcode:2006GeoRL..3313801R. doi:10.1029/2006GL026689. S2CID   14641695. Archived from the original (PDF) on 2010-06-29. Retrieved 2010-12-15.
  14. Guan, Bin; Waliser, Duane E.; Molotch, Noah P.; Fetzer, Eric J.; Neiman, Paul J. (2011-08-24). "Does the Madden–Julian Oscillation Influence Wintertime Atmospheric Rivers and Snowpack in the Sierra Nevada?". Monthly Weather Review. 140 (2): 325–342. Bibcode:2012MWRv..140..325G. doi: 10.1175/MWR-D-11-00087.1 . ISSN   0027-0644. S2CID   53640141.
  15. 1 2 Guan, Bin; Waliser, Duane E. (2015-12-27). "Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies". Journal of Geophysical Research: Atmospheres. 120 (24): 2015JD024257. Bibcode:2015JGRD..12012514G. doi: 10.1002/2015JD024257 . ISSN   2169-8996.
  16. 1 2 3 Curry, Charles L.; Islam, Siraj U.; Zwiers, F. W.; Déry, Stephen J. (January 22, 2019). "Atmospheric Rivers Increase Future Flood Risk in Western Canada's Largest Pacific River". Geophysical Research Letters . 46 (3): 1651–1661. Bibcode:2019GeoRL..46.1651C. doi:10.1029/2018GL080720. ISSN   1944-8007. S2CID   134391178.
  17. 1 2 Ralph, F. Martin; Rutz, Jonathan J.; Cordeira, Jason M.; Dettinger, Michael; Anderson, Michael; Reynolds, David; Schick, Lawrence J.; Smallcomb, Chris (February 2019). "A Scale to Characterize the Strength and Impacts of Atmospheric Rivers". Bulletin of the American Meteorological Society. 100 (2): 269–289. Bibcode:2019BAMS..100..269R. doi: 10.1175/BAMS-D-18-0023.1 . S2CID   125322738.
  18. 1 2 "CW3E Releases New Scale to Characterize Strength and Impacts of Atmospheric Rivers". Center for Western Weather and Water Extremes. February 5, 2019. Retrieved 16 February 2019.
  19. 1 2 "New Scale to Characterize Strength and Impacts of Atmospheric River Storms" (Press release). Scripps Institute of Oceanography at the University of California, San Diego. February 5, 2019. Retrieved 16 February 2019.
  20. 03 June 2022 tweet from CW3E . Atmospheric river on Twitter . Retrieved 05 June 2022.
  21. 1 2 3 Paltan, Homero; Waliser, Duane; Lim, Wee Ho; Guan, Bin; Yamazaki, Dai; Pant, Raghav; Dadson, Simon (2017-10-25). "Global Floods and Water Availability Driven by Atmospheric Rivers". Geophysical Research Letters. 44 (20): 10, 387–10, 395. Bibcode:2017GeoRL..4410387P. doi: 10.1002/2017gl074882 . ISSN   0094-8276.
  22. Neiman, Paul J.; et al. (2009-06-08). Landfalling Impacts of Atmospheric Rivers: From Extreme Events to Long-term Consequences (PDF). The 2010 Mountain Climate Research Conference.[ permanent dead link ]
  23. Neiman, Paul J.; et al. (2008). "Diagnosis of an Intense Atmospheric River Impacting the Pacific Northwest: Storm Summary and Offshore Vertical Structure Observed with COSMIC Satellite Retrievals" (PDF). Monthly Weather Review. 136 (11): 4398–4420. Bibcode:2008MWRv..136.4398N. doi:10.1175/2008MWR2550.1. Archived from the original (PDF) on 2010-06-29. Retrieved 2010-12-15.
  24. Neiman, Paul J.; et al. (2008). "Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations" (PDF). Journal of Hydrometeorology. 9 (1): 22–47. Bibcode:2008JHyMe...9...22N. doi:10.1175/2007JHM855.1. Archived from the original (PDF) on 2010-06-29. Retrieved 2010-12-15.
  25. "Atmospheric river of moisture targets Britain and Ireland". CIMSS Satellite Blog. November 19, 2009.
  26. Stohl, A.; Forster, C.; Sodermann, H. (March 2008). "Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N–a tale of hurricanes and an atmospheric river" (PDF). Journal of Geophysical Research. 113 (D5): n/a. Bibcode:2008JGRD..113.5102S. doi:10.1029/2007jd009006.
  27. Lavers, David A; R. P. Allan; E. F. Wood; G. Villarini; D. J. Brayshaw; A. J. Wade (6 December 2011). "Winter floods in Britain are connected to atmospheric rivers" (PDF). Geophysical Research Letters . 38 (23): n/a. Bibcode:2011GeoRL..3823803L. CiteSeerX   10.1.1.722.4841 . doi:10.1029/2011GL049783. S2CID   12816081 . Retrieved 12 August 2012.
  28. 1 2 Dezfuli, Amin (2019-12-27). "Rare atmospheric river caused record floods across the Middle East". Bulletin of the American Meteorological Society. 101 (4): E394–E400. doi: 10.1175/BAMS-D-19-0247.1 . ISSN   0003-0007.
  29. Dettinger, Michael D. (2013-06-28). "Atmospheric Rivers as Drought Busters on the U.S. West Coast". Journal of Hydrometeorology. 14 (6): 1721–1732. Bibcode:2013JHyMe..14.1721D. doi: 10.1175/JHM-D-13-02.1 . ISSN   1525-755X. S2CID   2030208.
  30. 1 2 Christensen, Jen; Nedelman, Michael (November 23, 2018). "Climate change will shrink US economy and kill thousands, government report warns". CNN. Retrieved November 23, 2018.
  31. Chapter 2: Our Changing Climate (PDF), National Climate Assessment (NCA), Washington, DC: USGCRP, November 23, 2018, retrieved November 23, 2018
  32. Wehner, M. F.; Arnold, J. R.; Knutson, T.; Kunkel, K. E.; LeGrande, A. N. (2017). Wuebbles, D. J.; Fahey, D. W.; Hibbard, K. A.; Dokken, D. J.; Stewart, B. C.; Maycock, T. K. (eds.). Droughts, Floods, and Wildfires (Report). Climate Science Special Report: Fourth National Climate Assessment. Vol. 1. Washington, DC: U.S. Global Change Research Program. pp. 231–256. doi: 10.7930/J0CJ8BNN .
  33. Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2015: Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. Journal of Hydrometeorology, 16 (1), 118–128. doi:10.1175/JHM-D-14-0080.1.
  34. Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophysical Research Letters, 42 (17), 7179–7186. doi:10.1002/2015GL065435.
  35. Neiman, Paul. J.; Schick, L. J.; Ralph, F. M.; Hughes, M.; Wick, G. A. (December 2011). "Flooding in western Washington: The connection to atmospheric rivers". Journal of Hydrometeorology. 12 (6): 1337–1358. Bibcode:2011JHyMe..12.1337N. doi: 10.1175/2011JHM1358.1 .
  36. Paul Rogers (2019-05-14). "Rare "atmospheric river" storms to soak California this week". The Mercury News . San Jose, California . Retrieved 2019-05-15.
  37. 1 2 Kurtis Alexander (December 5, 2019). "Storms that cost the West billions in damage". San Francisco Chronicle. p. A1.
  38. Jill Cowan (2019-05-15). "Atmospheric Rivers Are Back. That's Not a Bad Thing". The New York Times.
  39. Corringham, Thomas W.; Ralph, F. Martin; Gershunov, Alexander; Cayan, Daniel R.; Talbot, Cary A. (December 4, 2019). "Atmospheric Rivers Drive Flood Damages in the Western United States". Science Advances. 5 (12): eaax4631. Bibcode:2019SciA....5.4631C. doi:10.1126/sciadv.aax4631. PMC   6892633 . PMID   31840064.
  40. "Deluge to take a pause in B.C. before next atmospheric river arrives". The Weather Network . November 28, 2021. Retrieved November 29, 2021.
  41. "Northwest cloudbands". Bureau of Meteorology. 5 June 2013. Retrieved 11 August 2020.
  42. "Indian Ocean". Bureau of Meteorology . Retrieved 11 August 2020.
  43. Guan, Bin; Waliser, Duane (2015-11-28). "Detection of Atmospheric Rivers: Evaluation and Application of an Algorithm for Global Studies". Journal of Geophysical Research: Atmospheres. 120 (24): 12514–12535. Bibcode:2015JGRD..12012514G. doi: 10.1002/2015JD024257 . S2CID   131498684.
  44. Lavers, David A.; Villarini, Gabriele (2013-06-28). "The nexus between atmospheric rivers and extreme precipitation across Europe: ARS AND EXTREME EUROPEAN PRECIPITATION". Geophysical Research Letters. 40 (12): 3259–3264. doi:10.1002/grl.50636. S2CID   129890209.
  45. F. M. Ralph; M. D. Dettinger (August 9, 2011). "Storms, Floods, and the Science of Atmospheric Rivers" (PDF). Eos, Transactions, American Geophysical Union . Vol. 92, no. 32. Washington, DC: John Wiley & Sons for the American Geophysical Union (AGU). pp. 265–272. doi:10.1029/2011EO320001.
  46. "Eos, Transactions, American Geophysical Union". evisa. Retrieved 25 March 2016.

Further reading